

Modelling Animal Motion as *Random Walkers and Active Brownian Particles*

Niko Komin

Udo Erdmann

Lutz Schimansky-Geier

Humboldt-University Berlin

Animal Motion - Random Walkers and Active Brownian Particles – p.1

Animal Motion - Random Walkers and Active Brownian Particles – p.2

Overview

- the animal and its movement features
- What are the advantages to move this way?
- proposing two motion models, a
 - Random Walker
 - Active Brownian Particle

(Two well known models, not always easily mapped onto each other!)

model of food consumption

The Daphnia

daphnia

- 2..4 mm long under water animal, part of "zooplankton"
- mainly night-active
- orientation: optical, mechanical and chemical

Animal Motion - Random Walkers and Active Brownian Particles – p.4

The Daphnia

How came *daphnia* into the focus of physicists?

- swarming without leading animal under certain light conditions
- **common** direction of rotation around one landmark

for swarming See Ebeling, Erdmann, Schimansky-Geier, or Hernández-García and López...

swarming *copepods* by R. STRICKLER with A. OKUBO & J. YEN

The Observation

here movement in darkness, no swarming

- **9** 3 swim strokes per second, $v = 4..16 \frac{mm}{s}$
- in "equilibrium" motion nearly in plane

measurement of turning angle distribution $p(\omega)$ in darkness ^a

^aexperiment by FRANK MOSS and ANKE ORDEMANN, St. Louis

The Observation

numbers:

- **preference** of angles between 20° and 40° (30%)
- one 10th goes backwards
- **9** Gaussian: $\langle |\omega| \rangle = 48^{\circ}$, $\sigma = 36^{\circ}$ (red line)

Proposing a Random Walker Model ^a

- which moves in a plane (2 dimensions)
- changes its direction relative to the view
- and according to a given turning angle probability.

RW are efficiently programmed on a computer.

^aPEARSON, RAYLEIGH; *Nature 1905*

Daphnia as Random Walker

steps of fixed length at discrete times here space is continuous

■ assuming constant step size $\lambda = \langle v \rangle \langle \tau \rangle \approx \frac{10}{3} mm$

$$\vec{x}_{i+1} = \vec{x}_i + \lambda \left(\begin{array}{c} \cos\left(\phi_{i-1} + \omega_i\right) \\ \sin\left(\phi_{i-1} + \omega_i\right) \end{array} \right)$$

- ϕ : direction of motion
- ω : angle between successive steps, $p(\omega)$ -distributed random variable

A Random Walkers $\langle x^2(n) \rangle$

mean square displacement of this correlated Random Walker:

$$\Rightarrow \left\langle \vec{x}_n^2 \right\rangle = \lambda^2 \left[n \frac{1+\gamma}{1-\gamma} - 2\gamma \frac{1-\gamma^n}{(1-\gamma)^2} \right] \qquad {}^{\rm a}$$

with
$$\gamma := \langle \cos(\phi_i - \phi_{i+1}) \rangle = \int_{-\pi}^{+\pi} p(\omega) \cos \omega \, d\omega$$

- **9** for long times (n): **linear** growth of displacement
- diffusion coefficient (in 2-d):

$$4D = \frac{\lambda^2}{\tau} \frac{1+\gamma}{1-\gamma} =: \frac{\lambda^2}{\tau} D_n$$

^ae.g. in AKIRA OKUBO: "Diffusion and Ecological Problems: Modern Perspectives"

RW: Diffusion Coefficient (a)

(to simulate backward jumps)

- $p(\omega) = \frac{1}{2} [a \, \delta(|\omega| \omega_1) + (1 a) \, \delta(|\omega| \omega_2)],$ $\gamma \text{ easily obtained} \Rightarrow D$
- Position of small δ -peak ($P = \frac{1}{10}$) reduces D by 30% ($\omega_1 = 48^\circ, \omega_2 = 48^\circ..150^\circ$)

RW: Diffusion Coefficient (b)

Solution for a Gaussian distribution

(to explore preferred angle and its variance)

- solution for Gaussian distributed angles can be derived ^a
 - for $\langle |\omega| \rangle = 48^{\circ}, \sigma = 36^{\circ}$ (red line in shown histogram) $D_n = 3.1$
 - i.e. 3 times faster than free particle
 - high gradient area

^aKOMIN, ERDMANN, SCHIMANSKY; *Fluctuation and Noise Letters 03/2004*

Animal Motion - Random Walkers and Active Brownian Particles - p.11

Conclusions from Random Walker

- tiny amounts of backward jumps change spreading significantly
- *daphnia* diffusion is 3 times faster than unbiased Random Walker
- diffusion coefficient of *daphnia* is situated in high gradient area

Proposing an Active Brownian Particle model

with angular correlation

ABP are active due to nonlinear friction ("self-propelled particles").

Cost of implementation higher than that of RW, but interactions are more easily introduced.

Langevin equation:

$$\frac{d\vec{r}}{dt} = \vec{v}; \quad \frac{d\vec{v}}{dt} = (\alpha - \vec{v}^2)\vec{v} + \sqrt{2D_v}\vec{\xi}(t) + \vec{\omega} \times \vec{v}$$

non-linear friction $\Gamma(v)$, accelerates slow particles, slows down fast

• very low noise:
$$|v| \to \sqrt{\alpha}$$

stationary *v***-distribution**:

$$P_0(v) = N v \exp\left(-\frac{1}{D_v} \int \gamma(v) v \, dv\right)$$

• $\vec{\omega} = \{0, 0, \omega\}$ induces Lamor-like rotation, no influence on *v*-distribution

Daphnia as ABP

Diffusion Coefficient of ABP

Approximation:

• $D_v/\alpha \rightarrow 0$, all particles move with most probable \tilde{v}

$$\Rightarrow D_r = \frac{\tilde{v}^4}{2D_v} \left(\frac{1}{1+\omega^2 \,\tilde{v}^4/D_v^2}\right)^a$$

Simulations (dots): $\alpha = 1$; $D_v = 1$ (black), $D_v = 0.1$ (red), $D_v = 0.01$ (blue)

^aSchimansky, Erdmann, Komin; *Physica A 10/2004*

Conclusions from ABP

- diffusion coefficient for proposed model obtained
- for low noise good accordance to simulation data
- D dependence qualitativly similiar to RW

BUT:

not a one-to-one "translation"

Proposing a food model

- \blacksquare We know that turning angle distribution has strong influence on D.
- How do differently diffusing particles conquer their territory?

Food Model

• food density $f(\vec{r},t)$, food uptake rate ho, daphnia density $C(\vec{r},t)$

$$\partial_t f(\vec{r}, t) = -\rho f(\vec{r}, t) C(\vec{r}, t)$$

Assumptions:

- food does neither move nor grow, daphnia density is a Gaussian
- integration yields: $f(\vec{r},t) = f_0 \exp\left[-\frac{\rho}{4\pi D} E_1\left(\frac{\vec{r}^2}{4Dt}\right)\right]$

left: $\rho = 2.5 \cdot 10^{-4} \frac{m^2}{s}$, right: $\rho = 2.5 \cdot 10^{-3} \frac{m^2}{s}$

Animal Motion - Random Walkers and Active Brownian Particles - p.18

Food Consumption

I leftover food in a circle (of radius R) for the time T:

$$F_{R,T,\rho}(D) = 2\pi f_0 \int_0^R \exp\left[-\frac{\rho}{4\pi D} \mathcal{E}_1\left(\frac{\vec{r}^2}{4DT}\right)\right] r dr$$

- **•** there is a minimum in terms of D
 - with constant area (R) and time (T) (left picture)
 - as well as with constant area (R) and uptake rate (ρ) (right picture)

Animal Motion - Random Walkers and Active Brownian Particles – p.19

Conclusions

The daphnia movement was modelled in two different ways.

- Random Walker model:
 - backward jumps reduce D by 30%
 - *daphnia* diffuse (3 times) faster than Brownian RW
 - D is in a high gradient area
- Active Brownian Particles: long time scale solution given

An exact mapping RW \leftrightarrow ABP is desired.

The developed food model

shows local maximum in consumed food regarding D (and ω).

The food model parameters (area R, time T, uptake rate ρ) should be stated more precisely (real dimensions) and measured and compared in biological experiment.