Diplomarbeit

DEVELOPMENT OF AN INFRASTRUCTURE
FOR AGENT-BASED INTELLIGENT
INFORMATION RETRIEVAL

Technische Universitit Berlin

Fakultat TV - Elektrotechnik und Informatik
Institut fiir quantitative Methoden
Fachgebiet Systemanalyse und EDV

Betreuer:
Prof. Dr. Herrmann Krallmann
Dr.-Ing. Sahin Albayrak

Daniel Kirsch
Matrikel-Nummer: 178195

22. Oktober 2001

Zusammenfassung

Information Retrieval ist ein Begriff, der in unserer Informationsgesellschaft
zunehmend an Bedeutung gewinnt. Die Verwendung von Methoden des Da-
ta Minings fiir Textanalysen, die iiber blofles Text-Matching hinaus gehen,
kann dazu beitragen, die enorme Informationsflut, der jedermann heutzutage
ausgesetzt ist, zu ordnen.

Eine solche Methode, die die Latent Semantic Analysis (LSA) mit einer
Self-Organizing Map (SOM) kombiniert, wird in dieser Diplomarbeit ange-
wendet. Dabei werden semantische Ahnlichkeiten zwischen Dokumenten in
Form einer Karte visualisiert.

Diese Diplomarbeit beschreibt die Implementierung eines Multi-Agenten-
Systems auf der Basis der Agenten-Plattform JIAC IV, welches die Infra-
struktur fiir ein solches visuelles Information-Retrieval-System bereitstellt.
Dabei werden die besonderen Vorziige von Multi-Agenten-Systemen ausge-
nutzt, ihrer Fahigkeiten zur selbstindigen Kooperation und die Méglichkeit,
zeitaufwindige und speicherintensive Probleme leicht zu verteilen. Im Mit-
telpunkt der prototypischen Realisierung ARISE (Agent-based Readjustable
Intelligent Search Engine) steht zum einen die Skalierbarkeit des Systems,
die durch ein verteiltes System gut gewihrleistet werden kann. Zum anderen
spielt die Wiederverwendbarkeit eine grofie Rolle, zu diesem Zweck wurden
viele Teile des Systems so gestaltet, daf} sie in anderen Anwendungen Eingang
finden konnen.

Abstract

Information Retrieval is a term with increasing importance in our information
society. The usage of complex data mining methods for text analyses is
required to organize the large amounts of information everyone is exposed
to.

One such method, a combination of Latent Semantic Analysis (LSA) and
a Self-Organizing Map (SOM), is used in this diploma thesis. This approach
allows the visualization of semantical similarities between documents in a
map.

The diploma thesis describes the implementation of a multi-agent system
based on the agent platform JIAC IV which provides the infrastructure for
such a visual information retrieval system. It utilizes distinctive features of
multi-agent systems, in particular the ability to cooperate autonomously and
to distribute time-consuming and memory-consuming problems. This proto-
typical implementation called ARISE (Agent-based Readjustable Intelligent
Search Engine) is focused on the scalability of the system provided by a dis-
tributed approach. Since reusability is an important factor many parts of
the system are developed for simple inclusion in other applications.

Contents

List of Figures

List of Tables

1

Introduction
1.1 Objectives
1.2 Structure of the Thesis
Approach
2.1 Information Retrieval - Text Retrieval
2.2 Preprocessing oo
2.3 Dimensional Reduction,
24 SOM
2.5 Distributed Systems
Agent-based Systems
3.1 JIACIV . .. e
3.2 Designo
Preprocessing
4.1 Supplying Documents
4.2 Extracting Plain Text
4.3 Text Analysiso
4.4 Database. o
4.4.1 'The Data Model
442 TheSQL Agent
4.5 Administration oL

CONTENTS

5 Mapping
5.1 Random Mapping
5.2 Principal Component Analysis
5.3 Self-Organizing Map
54 Database
5.4.1 Data Model,
5.5 Administration oL

6 Querying

6.1 Processing of a User Query

6.2 DAI Navigator and Multi-Access-Point

6.3 The Graphical User Interface
7 Evaluation

7.1 Reusability o

7.2 Scalability o

7.3 Performance Lo

8 Conclusion
81 Outlook

A List of Abbreviations

32
34
36
38
39
39
40

42
43
43
46

48
48
49
a0

52
93

56

List of Figures

2.1
2.2

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4
9.5
2.6

6.1
6.2
6.3
6.4

The ARISE text mining process 9
An example for a self-organizingmap 13
A JIAC IV marketplace with multiple agents 18
The debugger tool o000 20
The ARISE preprocessing architecture 22
Data flow of the preprocessing marketplace 23
Preprocessing data modelo L. 29

The admininstration console of the preprocessing marketplace 30

The ARISE mapping marketplace 32
Data flow of the mapping marketplace 33
An PCAexample 37
Master datamodel, 39
The administration agent 40
Creation of labels with the administration agent.. 41
The ARISE querying marketplace 42
Data flow of the querying marketplace 44
The DAI Navigator 45
The ARISE graphical user interface 46

List of Tables

2.1
2.2
2.3

4.1

5.1
5.2

Frequency of words - example vector 10
Sliding window - example vector 11
Sliding window over words - example vector 11
Preprocessing - example vectoro 28
Calculating the relative frequencies 34
Two vectors - more components 35

Chapter 1

Introduction

In the last decades one has observed a dramatic increase in the use of
information-based technology. In 1994 the so-called Bangemann Report!
introduces the term “information society”[Ban94] to describe the growing
accessibility of this technology and its broad acceptance in our society. This
very accessibility resulted in a demand for always more speed and storage
capacity, leading to an overflow of stored and highly unorganized informa-
tion. At this point the need arised for efficient information retrieval from
huge databases, resulting in the development of a variety of search engines.
The most illustrative example of this situation is the Internet: a so complex
and heterogeneous database, that its contents can only be accessed efficiently
through WWW search engines. But even well-assorted databases almost al-
ways have search engines to speed-up researches. The large quantities of
textual data are a continuing challenge for applications like information re-
trieval systems.

Most of the existing search engines, like the popular web search engine
Google, use text-matching techniques to find pages, sometimes in combina-
tion with other algorithms to improve the search results: “Google combines
PageRank with sophisticated text-matching techniques to find pages that
are both important and relevant to your search” [Goo01]. The input of a few
keywords logically linked by boolean operations (NOT, AND, OR) results in
a list of documents containing one or more of these keywords.

However, text-matching techniques are not context-sensitive and thus un-
able to recognize content similarity among documents. With text-matching
the abbreviation “SOM?”, for example, could lead to such different results as
“School Of Metaphysics”, “Self-Organizing Map”, and “Soil organic matter”.
One recognizes the need for a search engine able to analyze documents se-
mantically, compare them with other documents or complex search requests,

lof the European Commissioner Martin Bangemann

CHAPTER 1. INTRODUCTION 6

and (graphically) display relations among them.

This diploma thesis with the title “Development of an Infrastructure for
Agent-Based Intelligent Information Retrieval” provides an infrastructure
based on an agent technology for such a text retrieval system. To this pur-
pose it uses algorithms from the artificial intelligence (AI) implemented and
tested by Richard Cissée in another thesis with the title “Neural Informa-
tion Processing Methods for Agent-Based Intelligent Information Retrieval”
[CisO1]. Most of these methods are well-known and well-studied but often
only used for small information retrieval problems with low dimensionality.
With the increasing of computing power there is now the possibility to use
them for larger problems like text mining and information retrieval.

1.1 Objectives

The main purpose of this diploma thesis is the implementation of a new
information retrieval system, which is able to analyze documents and rec-
ognize content similarities between them. In order to accomplish this, a
scalable and reusable software architecture has to be developed. This ar-
chitecture must provide functionality for the necessary special preprocessing
of the documents after extracting the plain text, the creation of a database
access, the implemention of administration tools, the embedding of the Al-
methods, and finally the development of a graphical user interface for search
requests to test the results. A concept for simple adaptation of the system to
new document formats has to be developed. Due to the large complexity of
the task the implementation of the algorithms itself was realized separately
in a second diploma thesis [Cis01].

Since Al methods are very time-consuming and memory-consuming a dis-
tributed system needs to be implemented for a scalable architecture. Agent-
oriented technology, being an approach which provides distribution, is chosen
in the implementation. Another objective is the verification that the agent-
based approach is well suited for the implementation of a scalable information
retrieval system.

With the infrastructure and the Al-algorithms an agent system called
ARISE (for Agent-based Readjustable Intelligent Search Engine) has to be
implemented. This agent system, running on the JIAC IV environment
[Dai01], can be part of complexer systems, and will deliver a concept of
relations between textual information. However, it has to be possible to use
the system as a stand-alone search engine with its own user-interface.

CHAPTER 1. INTRODUCTION 7

1.2 Structure of the Thesis

The structure of the thesis is as follows: In Chapter 2 the approach, including
the used techniques is introduced. For some reasons (described in the fol-
lowing chapters) an agent-based implementation seems to be a good solution
for the infrastructure. Therefore in Chapter 3 an overview of agent-based
systems is given.

The next three chapters describe the implementation of the three parts
of the text retrieval system. Chapter 4 deals with all processes necessary to
prepare the text mining. In the following Chapter 5 the creation of the map,
which represents the similarity relations between documents, is described.
In Chapter 6 the handling of queries is explained and the Graphical User-
Interface of the implementation is introduced.

In Chapter 7 the approach and the implementation are evaluated with
a special focus at the scalability, reusabilty and performance of the imple-
mentation. Finally, in Chapter 8 the results are concluded and an outlook is
given. Subsequent to the conclusion are the appendices.

Chapter 2

Approach

In this chapter the basic concepts of information retrieval as well as the
methods of the artificial intelligence used for this Information Retrieval (IR)
system are introduced. The explanation of the AI methods is only brief,
since their implementation is part of the diploma thesis of Richard Cissée
[CisO1]. Nevertheless, a basic understanding of the algorithms is necessary
for the comprehension of the next chapters.

2.1 Information Retrieval - Text Retrieval

Information Retrieval (IR) describes a sub-field of Data Mining dealing with
“the representation, storage, organization of, and access to information items”*
[Rij79]. Text retrieval is the part of information retrieval concerning textual
information items, i.e. documents. In the following three different models of
text retrieval are represented.

Boolean Retrieval

Boolean retrieval is the most common technique used for text retrieval. A
number of keywords is matched with those contained in the documents. The
keywords are linked by logical operators like AND, OR and NOT, therefore
this model is called boolean retrieval. It has no weighting, only the presence
or not, of a keyword in the document is relevant. Therefore it is impossible to
consider the frequency of words or to access their importance for the content.

'In the context of text retrieval, these information items are documents.

CHAPTER 2. APPROACH 9

Probabilistic Models

The main problem of boolean retrieval is the fact that most queries are
“unprecise”. When information about a special topic is searched, the user
is often not familiar with all vocabulary associated to it. The probabilistic
model and the vector space model are two approaches which consider this
fact.

Probabilistic models determine the probability of a document’s relevance
with regard to the query. Most of these techniques are part of the supervised
machine learning, i.e. they must be trained by a human, and sometimes the
results are influenced by the personal view of the supervisor. An example
of probabilistic models is the naive Bayes algorithm, an overview is given in
[MN98g].

Vector Space Models

The third model type is the vector space model. Vector space models use rules
to create a vector representing every document. Content differences between
documents are measured as distances between the vectors representing them.
The approach used in this thesis is such a vector space model.

The output of the information retrieval system developed here is a graphi-
cal representation of documents in a 2-dimensional map. Adjacent documents
are more similar to each other than documents lying at greater distances.
Interdisciplinary documents are ideally placed between the clusters of their
disciplines. Queries are treated as documents and visualized as points in the
map. Starting at any point other documents can be searched. In this way
relationships among documents and queries are easily visualized.

Random SOM

Documents Preprocessing Mapping (map)

Figure 2.1: The ARISE text mining process

To analyze text documents a technique called Latent Semantic Analysis
is used. “Latent Semantic Analysis (LSA) is a statistical model of word
usage that permits comparisons of semantic similarity between pieces of tex-
tual information” [Fol96]. This technique was first introduced in 1990 by
Deerwester, Dumais, Landauer, Furnas and Harshman [DDL*90]. After an-
alyzing all documents using the Latent Semantic Analysis (LSA), a so called
Self-Organizing Map (SOM), a special case of a neural network, is trained

CHAPTER 2. APPROACH 10

with its results. This neural network is then represented as a 2-dimensional
map.

However, before using the LSA and SOM algorithms it is necessary to
preprocess the documents to enhance the results of the analysis (Figure 2.1).

2.2 Preprocessing

Since we are interested in comparing document content instead of merely
comparing the words contained in a document, it makes sense to explicitly
disconsider filler words like articles, pronouns, prepositions, etc. After the
elimination of such words from the document text, the remaining words are
used to transform the document in a vector, this is the first part of the LSA.
There are different approaches for this transformation.

Word Frequency

The first one is to consider each different word in the document as one dimen-
sion of a vector space Vector components in each direction correspond to the
frequency of the words associated with them. This simple approach has one
important handicap. Two texts with the same words in completely different
sequences have the same vector. Table 2.1 shows the document vector of the
phrase “to be or not to be” with this approach?.

Word | Frequency
to 2
be 2
or 1
not 1

Table 2.1: Frequency of words - example vector

Sliding Window

The second transformation uses a “sliding window” over consecutive char-
acters while ignoring spaces. Every (different) combination of n consecutive
characters® is one dimension in the vector space. By increasing n the window
can reach whole word groups (so that texts with the same words in different

2without filler words removal
3n is the size of the window.

CHAPTER 2. APPROACH 11

sequences will result in different vectors). Table 2.2 shows the document
vector of the phrase “to be or not to be” with a window size of 4.

Character Combination | Frequency
tobe
obeo
beor
eorn
orno
rnot
noto
otob

o I ey Sy sy ey =)

Table 2.2: Sliding window - example vector

Sliding Window over Words

The third approach is to combine both previously mentioned techniques in
a sliding window over words. In this case single as well as double words,
consisting of two consecutive words, are stored. The details of all three
variants and the complete discussion of their advantages and disadvantages
is to be found in [Cis01]. Table 2.3 shows the document vector of the phrase
“to be or not to be” with this approach®. In this thesis, we chose the third
variant.

Word Combination | Frequency
to
be
tobe
or
beor
not
ornot
notto

[y iy ey gy eIV N

Table 2.3: Sliding window over words - example vector

4window size 2

CHAPTER 2. APPROACH 12

2.3 Dimensional Reduction

After determining the corresponding vector to each document, they span a
m-~dimensional space, where m is the number of all different words found
in all considered documents. In general, m is very large, increasing with
document number. The Latent Semantic Analysis (LSA) now reduces this
high-dimensional space with minimal information loss. Several techniques
are possible: Principal Component Analysis (PCA) is used to create vectors
with lower dimensionality, containing nearly the same information as the
higher-dimensional vectors. Because of its high complexity the PCA is very
time-consuming. Therefore, before using the PCA, we reduce dimensionality
by another method: Random Mapping. This relatively new technique was
introduced by Kaski® in 1998. It can be used to reduce high-dimensional
vectors to a dimensionality of a few hundred with small information loss.
The dimensionality of the resulting vectors is subsequently reduced again
with the PCA to a very low dimensionality because the information loss for
low dimensionalities is smaller (as with Random Mapping).

Dimensional reduction is not the only reason for executing the PCA. In
one of the following chapters is shown, that the compression of information
with PCA can improve the results of a query.

2.4 SOM

With the resulting low dimensional vectors a neural network is trained, a
so called Self-Organizing Map (SOM). This technique was introduced by
Kohonen in 1990 [Koh90], therefore these maps are often called Kohonen
maps. The graphical representation for such an Self-Organizing Map (SOM)
is shown in Figure 2.2. In this example the training vectors are vectors with
either only positive values as components or only negative values (randomly
generated). Both groups are divided by the SOM during training. The
vectors are represented by black points. Each color field represents one node
of the neural network, the color represents the mean distance of this node to
all neighbour nodes. The darker the color the greater the distance between
this node and its neighbours (and the greater the distance between vectors
associated with this nodes).

Although the LSA is over ten years old, there are only a few tools and
projects using this technique, for example the WEBSOM project [WEBO01],
probably because it is more complex and resource expensive than text match-
ing algorithms.

®based on the Johnson Lindenstrauss Lemma, see [JL84]

CHAPTER 2. APPROACH 13

Figure 2.2: An example for a self-organizing map

2.5 Distributed Systems

The complexity of the techniques introduced in the previous sections re-
quires a scalable architecture. We decided to implement the infrastructure
as a distributed system in order to divide the complexity and execute time
consuming processes in parallel. We have used a multi-agent system because
it is easy scalable and allows easier implementation of distributed systems.
In addition the AI capabilities make it easier to include text extraction for
new document types (see Chapter 4).
The text retrieval process can be divided in three parts:

e Preprocessing: First the documents are preprocessed. The resulting
data can be used for other purposes (for example simple text matching
search), so this part is independent from both others.

e Mapping: Then the vector dimensionality is reduced and the Self-
Organizing Map is trained.

e Querying: The last part is the handling of queries with a Graphical
User Interface (GUI).

CHAPTER 2. APPROACH 14

These three parts can run nearly independent from each other and are easy
to distribute over many computers.

After a short introduction in agent-based systems, which is necessary
for the following chapters, it is explained how the three parts will work for
themselves independently and together.

Chapter 3

Agent-based Systems

In this chapter agent-based systems are introduced. This technology has
aquired an increasing importance in the recent years, and it seems to be a
good solution for complex problems like the text retrieval algorithms intro-
duced in the previous chapter.

Agent-oriented techniques have their origin in distributed artificial intel-
ligence, although they have been greatly influenced by artificial intelligence
(knowledge-based systems), by the object oriented techniques, by the deci-
sion theory and the (tele-)communication.

Due to so many contributions there is no undisputable definition for
“agents” (from latin: agens - the impelling force). However, there are some
features common to the majority of them. An agent, according to Yoav
Shoham is “an entity whose state is viewed as consisting of mental compo-
nents such as beliefs, capabilities, choices, and commitments” [Sho91]. Later
a second meaning of “agent” was introduced by telecommunication. This
meaning has nothing to do with intelligent agents. According to Sahin Al-
bayrak, “...the term Agent is used for two qualities of software, one is at least
related to Al and the other is not”[Alb98]. It follows that a program must
have the following attributes to be called an agent:

e Autonomy: i.e. the agent can control its own activities and invoke
actions without human user interaction.

e Interactivity: the ability to interact with its environment. For this
reason agents need to be able to communicate with their environment
(and other agents).

e Reactivity: i.e. the agent can respond to events from the environment.

e Goal-orientation: “The term goal is used in a more metaphorical
sense to describe the fact that agents pursue a given task until it is

15

CHAPTER 3. AGENT-BASED SYSTEMS 16

finished and may delay or even reject other tasks in the process.”

e Mobility: the ability of an agent to transport its code and information
from a network place to another.

e Adaptivity: is a feature provided by artificial intelligence. Agents
should have the ability to learn from mistakes and to adapt themselves
to changing environment conditions.

e Planning capabilities: i.e. agents must be able to coordinate their
long term plans and goals.

e Reflection: an agent has to represent its mental states internally.

e Cooperation: an agent is able to execute its task by interacting with
other agents.

This is a very restrictive definition of agents and not all of these properties
are considered common by all experts (see [Bra97] [WC01]). Common to all
agent definitions seem only to be autonomy and interactivity.

Agent-based systems are distributed system allowing to use multiple re-
sources for one problem, therefore they are often considered as a part of
the Distributed Artificial Intelligence (DAI). They are a good solution for
time-consuming problems which can be divided in many tasks. The most
important difference between conventional distributed systems and the Dis-
tributed Artificial Intelligence (DAI) is the ability to handle situations and
scenarios which are not conceived during the design of the system.

Speech Acts

The most popular form of communication between agents are speech acts,
which give every data transmission a denotation (for example: questions, ex-
planations etc.). There are two important types: Knowledge Query and Ma-
nipulation Language (KQML) [F*93] [FFMM94] and Foundation for Intelli-
gent Physical Agent - Agent Communication Language (FIPA-ACL) [FIP97].
Both were devised to help software engineers develop multi-agent systems.
While FIPA-ACL is an standard based upon philosophical science terms,
KQML is an ad hoc standard which does not use the correct scientific terms.
FIPA-ACL provides the basic interaction mechanisms and primitive com-
munication acts to let agents interact with each other. Complex communi-
cations in FIPA-ACL have to be organized in conversation protocols.

CHAPTER 3. AGENT-BASED SYSTEMS 17

Belief, Desire, Intention

The concept of Belief, Desire, Intention (BDI) was introduced by Bratman
in 1987 [Bra87|. BDI architectures are examples of practical reasoning - the
process of deciding, which action to perform in the furtherance of the goals.
The following example explains the three terms:

o [believe that if I work hard I will pass the exam.
e I desire to pass the exam.

e So I intend to work hard.

Belief and desire shape the intentions that agents adopt. BDI agents
use two important processes: Deliberation, i.e. deciding what goal is to be
achieved, and determination of means, i.e. deciding how to achieve the goal.

Agent Toolkits

In recent years a large number of platforms and toolkits for agent-oriented
programming have been developed. One of the first was “Telescript” [Whi94],
an object-oriented and communication-centered scripting language. It was
developed by a consortium named General Magic founded by many well-
known firms like AT& T, Motorola, Sony, Toshiba, Fujitsu, Philips and Apple.
“Telescript” was concepted as an supplementation to existing programming
languages. It provides the basis for agent-oriented software development.
Standard concepts like TCP/IP are used for communication. But concepts
like cooperation are not supported, they must be implemented by the agents
themselves.

Beside “Telescript” SUN’s object-oriented language Java[Jdk01] became
important for agent-oriented platforms. Since Java is platform-independent
it is easy to run Java-based programs (like agents) on different operating
systems and hardware platforms. Java ME (MicroEdition) for many mobile
systems like Palm OS or Windows CE is very interesting for mobile applica-
tions for 3rd generation networks.

“Grasshopper”[BBCM98| is one of these Java-based mobile agent plat-
forms. It is built on top of a distributed processing environment. It allows
different variants of communication like CORBA, Java Remote Method In-
vocation (RMI) and socket programming. “Grasshopper” is very communi-
cation oriented.

CHAPTER 3. AGENT-BASED SYSTEMS 18

3.1 JIAC1IV

The Java Intelligent Agent Componentware IV (JIAC IV)! [Dai01] is an
agent development toolkit based on a Java class library, an Application Pro-
gram(ming) Interface (API) for the development of agent oriented systems
(see [AW99] and [FBK'01]). All agents run in an environment called mar-
ketplace (see Figure 3.1). The pure Java realization allows the deployment of
agents and marketplaces within any conceivable hardware context. A central
idea of the JIAC architecture is the inherent mobility support for any kind of
agents (although many of them remain stationary), i.e. agents can migrate
from one marketplace to another, travelling away with all their sources and
information they store.

Figure 3.1: A JIAC IV marketplace with multiple agents

With JIAC 1V it is easy to create distributed agent-oriented systems.
Since it is Java-based, the most functionalities and classes of Java can be
used for agents if writing new components. Java-based JIAC components are
the most common way to implement functionality in JIAC IV. The Artificial
Intelligence (AI) methods implemented by Richard Cissée are written in Java
and can be easily integrated.

Ontologies, Plan Elements, Goals and Services

JTAC IV received important influence from knowledge-based systems. Agents
have knowledge organized in ontologies. For communication two agents have
to know the same ontology.

The abilities of JIAC IV agents are described with plan elements, which
specify the tasks? an agent can execute. Every plan element has precondi-

ldeveloped at the DAI-Lab
%i.e. plans

CHAPTER 3. AGENT-BASED SYSTEMS 19

tions and effects, which describe the plan element in Java Agent Description
Language (JADL) in first-order predicate logic. On the basis of these spec-
ifications the agents can later use these plan elements, if the effects satisfy
their intentions and the preconditions are fulfilled.

Additionally every agent has the ability to set up goals, if it cannot satisfy
its intentions by using its own plan elements, these goals are matched with
services provided by other agents. Services are plan elements, which one
agent provides for others. All these features are the basis for an intelligent
cooperation between agents. So cooperation does not has to be implemented
by the agent like in “Telescript”, it is an elementary part of the system.
This fact has played an important role for the choice of JIAC IV for the
implementation of the Agent-based Readjustable Intelligent Search Engine
(ARISE) system.

Communication between agents is uniformly realized by means of speech
acts, based on the FIPA-ACL standard. These speech acts are distributed
between agents on different marketplaces via Transmission Control Proto-
col/Internet Protocol (TCP/IP), while agents on the same Virtual Machine
are using the Java Virtual Machine (JVM) communication. Security features
are also supported.

JIAC 1V is service-oriented, which means that agents interact with each
other only through service usages. An agent (or a human) can use services
from other agents by setting up a goal and sending it to the agent system.
All services of other agents are registered at a central administration, the
so called Directory Facilitator, and so a service can be selected which fulfills
the goal (although the service provider may refuse the execution of a service)
[SBO01a] [SBO1b]. With protocols the agents can determine the details of a
service usage.

Human Services

To allow humans to use agent services, so called human services have to be
executed. To access these services, a program called DAI Navigator can be
used. It uses a Graphical User Interface (GUI) provided by a so called alter-
ego-agent (which works as server for this GUI). After establishing the GUI,
the Navigator can communicate with the alter-ego-agent, which can use the
services of other agents.

Another possibility for human users to interact with the agent system is
the Multi-Access Point (MAP), which allows the use of services via HTML-
or WML-interfaces (see [ABFO01] for details). However, this technology is
still in development, and in its current state it is not possible to use it for
complex interactions.

CHAPTER 3. AGENT-BASED SYSTEMS 20

Egbebugge-' Toel - Remete Control

Agent Log Message Options

S 9 o

Do Step ps WWait

Gl = i v O = e = W 5 o — —
At - eyt e R Ao Steps: (1 | Wait: 1.0
£ Mig ZJexr Usid 3sop Init Act Step Susp 2 -

‘Components Knowiedye Log Messages Edit Goal
@ Knowledge Base

| ® & Oninlogies

| ® & jiac40 applications.radio RadiosRC

| & Facts

|9 @ Goals
@ & State Goal

¢ & ntentions

©- (& Operator Intention
@ @ Execution Stack

L] {exec-context (Service jiac40 applications radio. serice.s_seton) for null)
® @ Flan elements|

® & Servica

@ & SpeechAct

© & Protocol

o & Script

& & Primitive

® & Abstract
|| & & Conditian
| P @ Senices

© & (Service jiac40 applications radio test s_testh
| @ @& Rules

| Ontologles | Facts | Goals | ietentions | ExecutionStack || Planelements | Seices || Rules

Figure 3.2: The debugger tool: Here it shows ontologies, plans, services and
goals of an agent

JIAC Tools

JIAC IV supports the development of new agent systems with a number of
tools. Apart from the runtime environment, the parsing tools and the ontol-
ogy compiler this includes a debugging tool (see Figure 3.2) which allows to
view the knowledge base of an agent during runtime. The ontology builder
allows creation and manipulation of ontologies, which can be developed visu-
ally. The Agent Development Environment (ADE) is an agent builder, which
makes it possible to configure new agents by adding ontologies, components,
plans and facts in a simple Graphical User Interface (GUI).

3.2 Design

Since agent-based systems have a great complexity, there is no general con-
cept for the design of a multi-agent system. So it is impossible to use the
standard software engineering method like Fusion for the design of the ARISE
system.

CHAPTER 3. AGENT-BASED SYSTEMS 21

It seems logical to implement the three independent parts (preprocess-
ing, mapping, querying) mentioned in the previous chapter as three different
marketplaces. Since JIAC IV is service-oriented, the determination of the
agents results from the determination of the necessary tasks, i.e. the ser-
vices. Each agent performs at least one service, some agents have to perform
more (related) services.

The following three chapters describe the three marketplaces “prepro-
cessing”, “mapping”, and “querying”’. The details of the marketplaces, the
agents, and the interaction between them are explained.

Chapter 4

Preprocessing

This chapter explains the preprocessing of the documents. Before textmining
the documents have to be preprocessed to improve the results of the text
retrieval process. The preprocessing consists of four phases: supplying the
documents, extracting the plain text, analyzing it, and finally storing the
analyzed data in a database. These tasks are logically modelled as four
different agent types which work like an assembly line.

Independent of the data source (for example a database or the WWW) the
first agent, the Download agent, has to deliver the documents in an uniform
data format. This data format will be interpreted by a second agent, which
extract the plain text from the document. There may be different agents
for different document formats (Postscript, PDF, HTML, etc.). All of these
agents send their results (as plain text) to a third agent, the Preprocessor
agent, which analyzes their structure, create meta data about the documents
and send database statements to a database agent. Then the database agent
updates the meta database. The meta data may be used by other agents to
do the Latent Semantic Analysis, but it is also possible to use it for other
purposes (like text matching search).

RTF Agent
Preprocessor
PDF Agent Agent SQL Agent

HTML Agent
DownloadAgent
PS Agent

ARISE Preprocessing

Figure 4.1: The ARISE preprocessing architecture

22

CHAPTER 4. PREPROCESSING 23

In our implementation the assembly line is situated on one marketplace
and consists of seven agents (see Figure 4.1): The Download agent retrieves
the documents from the WWW. Four agents, namely HTML agent, PS agent,
PDF agent, and RTF agent, can extract the text from the most popular
document formats of the web. The Preprocessor agent performs the text
analysis and creates SQL statements which the SQL agent executes on the
database. Additionally to these agents the marketplace has the obligatory
manager and an administration agent for human control of all agents.

Document Download
1. Are downloaded (DOWnloadAgent)

2. Dellvers documents

Text extraction
(HTML agent, PDF agent,

Documents

PS agent, RTF agent)

3. Sends extracted text

Text AnaIyS|s ‘
(PreProcessor Agent)

4. Stores document vectors
Meta

Database .
-¢——5. Are stored in Database storing
(SQL Agent)

Figure 4.2: Data flow of the preprocessing marketplace

The preprocessing is nearly independent from the LSA and SOM, and
can run in parallel on many CPUs (with one or more database servers). So
it is possible to create many preprocessing marketplaces, for example for
different content providers like libraries and universities. The data of all
these marketplaces will be used later by a central marketplace to create the
map (see Chapter 5).

4.1 Supplying Documents

There are many possible sources for documents, for example news tickers,
news groups or databases. We have implemented an agent which retrieves

CHAPTER 4. PREPROCESSING 24

the documents from the probably most popular source: the World Wide
Web (WWW). To start the download process with the Download agent one
has to specify a text file containing a list of Uniform Resource Locators
(URLSs) which are to be downloaded. The agent verifies the URLs and starts
downloading the first document. Every 2-5 seconds an new document is
downloaded. The content of each document is stored in an array and -
together with the URL - sent to the agents which extract the plain text. The
Download agent sets up a goal containing all information and the content type
of the document. On the basis of this content type the document processing
agents can decide to accept or refuse this goal. If no agent can extract the
text from a specified content type the goal will be rejected (and the document
will not be stored in the database). The Download agent does not have to
know which kinds of documents can be processed.

This approach demonstrates a great advantage of the agent-based tech-
nology because it is possible to add (or remove) text extracting agents for
other document types without recompiling or reconfiguring the system. Doc-
ument types which cannot be processed will be abolished and if a new agent
can process one of them, its service will be used automatically.

If many Download agents are used in parallel for increasing the number of
documents which can be downloaded, it may be useful to give them lists with
documents from different servers because too many requests can decrease the
performance of the server which provides the documents.

The ARISE system uses a collection of 1400 documents, mainly abstracts
of theses and articles. The majority of these documents are Hyper Text
Markup Language (HTML)-documents, because the performance of prepro-
cessing was slowed down by other formats!.

Sometimes documents of the same source but with different contents and
subjects are considered as similar by the ARISE text retrieval system because
these documents have large headers (proportional to their text length). The
“similarity” of these documents consists only of these headers. A good exam-
ple are the dissertation abstracts of the Free University of Berlin [DARO1].
The English abstracts have always a German header and that seems to be the
reason, why documents with different subjects are clustered together in this
case. The only way to solve this problem is the creation of special Download
agents, which can filter headers. Unfortunately it is necessary to rewrite such
an agent for every different website, web database, or content provider.

In the following sections the preprocessing technique will be explained
with a small example. The following little HTML-document is delivered by
the Download agent. It contains a title, an image, some text, and a table.

Ltext extraction of RTF, PDF, and PS is more complicated than of HTML

CHAPTER 4. PREPROCESSING 25

<html>
<head>
<title>News - German Chancellor in Washington</title>
</head>
<body>
<hi>
The German chancellor Schröder arrives at
5 o’clock.
</hi1>
<table><tr>
<td>

</td>
<td>
The German chancellor.
</td>
</tr></table>
</body>
</html>

4.2 Extracting Plain Text

Only a few documents are in a plain text format, the majority (especially
in the World Wide Web) exists in styled formats like Hyper Text Markup
Language (HTML), Rich Text Format (RTF), MS Word, Postscript (PS) or
Adobe’s Portable Document Format (PDF). Some of them use tags, include
pictures and tables (like HTML), and some can even be compressed like PDF.

We have implemented four agents which accept HTML, Rich Text For-
mat (RTF), Postscript and PDF. These agents run on the same marketplace
like the other agents, but in some cases they should preferable run on an own
marketplace (on their own computer). Since each format is processed by a dif-
ferent agent, the preprocessing can be configured depending on the frequency
of document formats. For example: the Postscript agent uses an third-party
application? to extract plain text from the document. For every Postscript
file to preprocess a script will be started once. Since it is time-consuming,
the agent should run on its own marketplace, if many Postscript documents

2AFPL GhostScript 7.0 with the script “ps2ascii.ps”

CHAPTER 4. PREPROCESSING 26

have to be processed. Another very time-consuming text-extracting agent
would be an agent for Optical Character Recognition (OCR).

Because JIAC IV allows the inclusion of Java components, existing third-
party Java class libraries can be used to handle text and file formats. The
PDF agent of ARISE uses such a library [Ety01].

Text extraction makes another advantage of JIAC IV (and Java) obvious:
it is platform-independent. Some text-extracting algorithms run only on
particular operating systems, for example the conversion of Word documents
in plain text with Word macros. So it is necessary and possible to run
different marketplaces on different operating systems to solve such problems.

The greatest advantage of the service-oriented structure of JIAC 1V is
that the agents can organize the text extracting process autonomously. The
following scenario is possible: The Download agent gets a ZIP-Archive. Now
the ZIP agent extracts the documents of the archive which will be processed
by document agents (like a HTML Agent). These agents may extract the text
and may ask an OCR Agent for extracting text from included pictures. So
long as all qualified agents necessary to process these documents exist, they
will cooperate to solve the problem of extracting the text from a document
together.

In the example (see section 4.1) the HTML-agent would accept the goal
(because the document has document type “text/HTML”) and extract the
plain text. HTML-tags for special characters have to be replaced by the
characters, like the “ö” with an 6. Only the following text is extracted:

News - German Chancellor in Washington

The German chancellor Schroder arrives at 5 o’clock.

The German Chancellor.

The title is now a part of the text. The table is removed, but its containing
text is still present. Images are ignored in our implementation, although it
may be useful to analyze them with an OCR, because often the headlines of
HTML-documents are designed as images.

4.3 Text Analysis

After extracting the plain text from documents these texts must be trans-
formed into vectors. First all unimportant characters have to be removed. In
our implementation this includes all punctuation marks (which are replaced
with blanks) and even digits. Some special characters are replaced, like &,

CHAPTER 4. PREPROCESSING 27

0 and i with a, o and u. Apostrophes and hyphens have to be removed
accordingly. The search should not be case sensitive, so all characters are
transformed to lower cases.

In some cases it is important to keep digits, for example if the database has
many documents about chemistry, because most chemical formulas include
digits and would be corrupted without them. In our implementation only the
26 alphabetic characters are left after character removal. In the example, the
number five (of the time), one hyphen, and one apostroph disappear. The
“6” in Schr” oder is replaced by “0”. The example looks now like this:

news german chancellor in washington the german
chancellor schroder arrives at oclock the german
chancellor

Next the unimportant words have to be deleted. “Unimportant” are all
words of a so called stop list, like filler words, articles, pronouns, prepositions
etc. The list of unimportant words is called stop list and depends on the
language. It is impossible to use the same stop list for different languages
and therefore it is necessary to develop a language detection algorithm if
different languages have to be supported. A suggestion for such an algorithm
is made in section 8.1.

The creation of a stop list allows the reduction of the dimensionality of
vectors and the amount of data, since they do not hold any information. But
it is difficult to say which word is important and which is not. Most times the
word “well” is only a filler word, but in another context it means the same
like “fountain”. The vocabulary of the stop list depends on the documents
stored in the database. With the ARISE system it is possible to define own
stop lists for every different application. The example looks like this after
removing all unimportant words with the standard stop list (English) of the
ARISE system:

news german chancellor washington german
chancellor schroder arrives oclock german
chancellor

The words “in”, “the”(twice) and “at” have been removed. Then the
frequency of all different words is counted. The concatenation of every two
consecutive words is created and their frequency is counted too. A vector with
all words and double words as components is created (see Table 4.1). Then
the agent creates database statements to store these vectors in a database
and sends these statements to the SQL agent.

CHAPTER 4. PREPROCESSING 28

Dimension Frequency
german

chancellor
germanchancellor
news

newsgerman
washington
chancellorwashington
washingtongerman
schroder
chancellorschroder
arrives
schroderarrives
oclock

arrivesoclock
oclockgerman

e Rl Rl D Bl R Bl B Bl Bl Dl R K2 I B RS

Table 4.1: Preprocessing - example vector

Due to the agent-based technology it is easy to choose another approach
(see Chapter 2) for creating vectors from a document. One have only to
remove or disable the Preprocessor agent and replace it with another agent
able to perform the desired transformation.

Stemming

The preprocessing algorithm is unable to detect inflections. For the ARISE
system the word “computer” and its plural variant “computers” are different
things. The same problem exists with verbs, “send” and “sent” are not the
same for the algorithm. The results of the Latent Semantic Analysis can be
enhanced by reducing all words to their basic form. This process is called
stemming.

The best solution for this problem is the usage of a tool able to detect such
inflections, a morphology analyzer like the German Canoo [Can01]. However,
even these tools often suggest several alternatives, especially in languages like
German. Of course a morphology analyzer makes the LSA more language
dependent, because it can be used only for languages such a tool supports.

An alternative method is rule-based stemming. Prefixes and suffixes are
truncated by using rules like: replace suffix “ator” with “ate” 3. The best al-

3for example navigator and navigate

CHAPTER 4. PREPROCESSING 29

gorithm for English language is the heuristic stemming algorithm introduced
by Porter [Por80] [Por00]. For some other languages similar algorithms exist
(a Dutch version for example is introduced in[KP94]), but for languages with
a very complex grammar, like German, these algorithms are more compli-
cated [Cau99].

In addition it makes sense to replace acronyms and abbreviations with
the term they stand for. If one text contains the phrase “Latent Semantic
Analysis” and another one contains the acronym “LSA” the LSA is probably
not able to recognize that both means the same. The problem is, that there
are different meanings for many acronyms. For the abbreviation “SOM” the
Acronym Finder [Acr01] delivers 26 different meanings. The only way to
handle this problem is to compare all results with the text. In most cases
the author uses the full term of the acronym at least once (to explain the
acronym) and so the right term can be found.

Due to the large complexity and the language dependency the ARISE
system has no stemming algorithms or acronym replacement. One possible
way to integrate a stemming feature would be the creation of a new agent,
which provides the stemming as a service for other agents. If it gets words
in a language it does not support, it only returns the word.

4.4 Database

The large amount of data produced by the preprocessing needs to be stored in
a database. From this database other agents can read the vectors to analyze
them.

T_DOCUMENTS T_WORDS
PK,FK1 | ID LONG
—»
NAME TEXT(256) ID LONG
LOCATION | TEXT(256) WORD TEXT(64)
QUANTITY | LONG

Figure 4.3: Preprocessing data model

4.4.1 The Data Model

The meta database is a relational database with a very simple structure (see
Figure 4.3). It consists of two tables: T_-DOCUMENTS and T-WORDS.

CHAPTER 4. PREPROCESSING 30

T_-DOCUMENTS contains information about the documents, i.e. the title
and the location together with a unique document ID as primary key. The
second table, T_WORDS, contains for each different word of each document
how often it appears in this document. The document ID is the foreign key

and the same as in T_-DOCUMENTS.

T ARISE Preprocessing Administration Tool

emote Sensing of Farests, from Microwave . hip. Tl chalmers. seic 5s/doC .. L -1
1105 ¥agen fill verket Studier i arkitelt Jan Gezelius arb... hitp.Wwww2 lib chalmers seicthidissidoc/87 88103, O
1106 Electrical Characterization of Novel Insulators in M_. hitp w2 lib chalmers seicthidissidoc/87 88/ 0a]
1107 Raikway Wheel Flats Marensite Formation, Resi.. hitp.twsw2 lib chalmers. seicthdissidocra7agider.. [
1108 On the Analysis of Horns, Reflectars, and Periodic.. hitp fwwnw2 lib chalmers seicthidissidoc/@7 88/ 00 |
1108 Long-term Voltage Stability in Poser Systems - A hitpfwssw2 lib chalmers seficthidissidocr@7 9810 O
1110 On Surface Topagraphy of Stee| Sheet for Car Bod... hitp w2 lib chalmers seicthidissidoc/87 88100 vl
1111 The Impact of Application and Architecture Propert. . hitpfwww2 lib chalmers. seicthidissidoc/87 9810 [
1112 Client-Contractor Relationships in Bullding Projec... hitpifwsw2 lib chalmers. sefcthidissid ocr@7 980ka . v
1113 Engineering Ceramics for Tribological Systems . hitp w2 lib chalmers seicthidissidoc/87T 881<a |
1114 Fiber-Suppored Hydrogels with Controlled surfac hitpitessw2 lib chalmers seicthidissidocra7agiar.. [
1115 Life Cycle Considerations in Sustainable Busine .. hitpJfwaww? lib chalmers seicthidissidoc/@788iKar.. (v
1116 Customer-Focused Product Development A Pract.. hitp w2 lib chalmers seicthidissidoc/87 881<a .|
1117 Electronic Structure of Some Zinchlende Semicon... hitpfwsw2 lib chalmers. seicthidissid ocr@7 980k .. [
1118 Influence of Lactic Acid Fermentation on Enteropat . hitp:fweww? lib chalmers. seicthidissidoc/@788Kin.. [
1118 Acetylation of Solid Wood Waod Properies and P hitpitssw2 lib chalmers seicthidissidocra7a8ilar. [
1120 Mechanical Characterization of Engineering Materi . hitp:fwww2 |ib chalmers seicthidissidoc/@788iLar. [|
1121 Coke on Supported Palladium and Platinum Catal . hitp.itwaw2 lib chalmers seicthidissidoc/87881Lar. [E
1122 Lignin Model Compaunds: Synthesis, Stereache... hitp.twsw2 lib chalmers. seicthdissidocraraaiis.. [
1123 DA Interactions with Chiral Polyaza-aromatic Rut.. hitp wenw2 lib chalmers seicthidissidoc/@7 98/L0In.. |
1124 Defarmation and Fatigue Behaviour of Poraus an_ hitpssw2 lib chalmers seicthidissidocr@7a8ilin. [
1125 Interframe Quantization for Moisy Channels hitp w2 lib chalmers saicthidissidoc@7 981LIN ..]
1126 Information Management in Construction Projects. . hitp.#www2 lib chalmers. seicthidissidoc/87881Lu.. [4
1127 Lirhan Planking Badicination: | inking Bractica an __ hitec itssssa ik chalrmare egt.r‘jh.l’lcﬁ;:_el’dnrm?ﬁgm'al - [|

b

. 2 Refresh | Reset an ¥~ Mark Duplicates

*“"_J [l petete _Dmuj

|

Figure 4.4: The admininstration console of the preprocessing marketplace

4.4.2 The SQL Agent

To access databases, the agents of the ARISE system can use the so called
Structured Query Language (SQL) agent. SQL, the Structured Query Lan-
guage, allows users to access data in relational database management sys-
tems, such as Oracle, Sybase, Informix, Microsoft SQL Server, Access, and
others by allowing users to describe the data the user wishes to see or update.
The SQL agent allows sending of simple updates and queries (represented by
Java String objects) to the database. The connection between this agent and
the database is established using SUN’s Java Database Connectivity API
(Java Data Base Connectivity (JDBC)). The JDBC technology allows the
use of a wide range of SQL databases. Since only simple functions from the
JDBC API are used for the SQL agent, it works with any JDBC-1.0-driver.

CHAPTER 4. PREPROCESSING 31

The results of a query are serialized* and send to the agent sending the
query®. Since the creation of result objects from a database query is very
time-consuming, the SQL agent should - for queries - run on a separate
computer to use the full advantage of a distributed system.

4.5 Administration

To handle the preprocessing a special administration agent has been im-
plemented. It allows the start of the preprocessing assembly line and the
handling of documents stored in the meta database (see Figure 4.4).

It is possible to view documents stored in the database and to delete some
(or all) of them. As a special feature, documents with the same URL can be
searched. In this case, only the older document is marked for deleting. This
mechanism allows a simple update of documents by preprocessing documents
again and deleting the old versions afterwards.

4i.e. to bring objects in a sequential form (for communication or storing)
5in a special self created Java class: the SerializableResultSet

Chapter 5
Mapping

In this chapter the mapping marketplace is introduced. The mapping mar-
ketplace is the heart of the ARISE system (see Figure 5.1). It is named
“mapping” because it contains the functionality to create the Self-Organizing
Map (SOM). During the preprocessing a vector was created from every docu-
ment. The vector space is very high dimensional and has to be dimensionally
reduced by the Random Mapping (RM) Agent.

Document
Database
Agent

ARISE Preprocessing

PCA Agent Master

Database g!

Agent
SOM Agent

ARISE Mapping

Figure 5.1: The ARISE mapping marketplace

Then the Principal Component Analysis (PCA) is used to identify an op-
timal low-dimensional® subspace in the dimensionally reduced vector space

le.g. 10 dimensions

32

CHAPTER 5. MAPPING 33

(PCA Agent). Details about the PCA are described in the section 5.2. Fi-
nally, the output vectors of the PCA are used to train the Self-Organizing
Map of the SOM Agent. Every agent (except the SOM Agent) stores its
results in a central database (see Figure 5.2).

Meta database W

2. Sends documents
(SQL Agent 1)
1. Asks for documents

4 A
« 3 St duced vect Dimensional
. Stores reduced vectors ;
in database Reduction
(RM Agent)

——>5. Sends reduced vectors Transformation

Master database l-@—4. Asks for reduced vectors PCA and
(SQL Agent 2) l-— 6. Stores transformed vectors

(PCA Agent)
6. Asks for transformed vectors Creation of the
Map
——7. Sends transformed vectors
SOM Agent
9) (gent)
Filesystem -t 8. Stores map

Figure 5.2: Data flow of the mapping marketplace

The ARISE system contains two different types of database: a document
database and a master database. The first one contains the preprocessed
vectors (see section 4.4). There may be many databases of this type, be-
cause documents can be preprocessed in parallel on several marketplaces.
The master database can exist only once in the ARISE system. It stores
the vectors after dimensional reduction. Since the PCA needs all vectors
to analyze the principal components, they have to be stored in the master
database. The mapping market contains at least two database agents for the
handling of both databases.

Although the mapping marketplace is one logical unit, it is possible to
split it physically, especially the PCA agent and the SOM agent should be

CHAPTER 5. MAPPING 34

installed on different JIAC IV marketplaces (and engines), if the number of
documents is very high, or exceeds the hardware capacity?.

In the ARISE system the similarity of two documents is measured by
calculating the (usually Euclidean) distance between the two vectors repre-
senting them. If only the absolute frequency of the words in a document
corresponds to the components of its vector, document vectors created from
small documents containing only few words (e.g. small abstracts, queries)
are close to the null vector, and are therefore dissimilar to document vectors
of larger documents, although they may be similar in content. Therefore
all values are divided by the total number of words, i.e. the relative fre-
quency of each word in the document is calculated (see example in Table
5.1). This weighting causes the components of each document vector to add
up to one, which results in document vectors having more similar lengths,
independently of the document length.

Term Frequency | Relative Frequency
german 3 0.1428
chancellor 3 0.1428
germanchancellor 3 0.1428
news 1 0.0476
newsgerman 1 0.0476
washington 1 0.0476
chancellorwashington 1 0.0476
washingtongerman 1 0.0476
schroder 1 0.0476
chancellorschroder 1 0.0476
arrives 1 0.0476
schroderarrives 1 0.0476
oclock 1 0.0476
arrivesoclock 1 0.0476
oclockgerman 1 0.0476

Table 5.1: Calculating the relative frequencies

5.1 Random Mapping

Now the dimensionality of the document vectors has to be reduced, even if
the document has only some words. Although the example from Chapter 4

2e.g. 10000 documents may be to much for an 1-GHz-PC with 256 MB RAM

CHAPTER 5. MAPPING 35

seems to have only 15 components it has in fact an almost infinite number
of components, but most of them have the value zero. For a better under-
standing consider the following example: The example vector from Chapter
4 (vector 1) has 15 dimensions and the document vector of the phrase “latent
semantic analysis” (vector 2) has 5. But if both vectors have to be in the
same space, this space has 20 dimensions, although some components are
“empty” in each vector (see Table 5.2).

Dimension vector 1 | vector 2
german

chancellor
germanchancellor
news

newsgerman
washington
chancellorwashington
washingtongerman
schroder
chancellorschroder
arrives
schroderarrives
oclock
arrivesoclock
oclockgerman
latent

semantic
latentsemantic
analysis
semanticanalysis

[l Bl Rl Bl Rad A=l k=] R ==] N en] o] Nen] oo) o] N} Nev] Heo] Neo] Hev] N] Naw]

o] Ren) Koo N o] [y [Ny quiry pury [YSSry puy NIy jusry jyly jranry jyry pasry U It NoU)

Table 5.2: Two vectors - more components

Random Mapping is one technique to reduce the dimensionality of the
space containing the vectors. It is also possible to use the Principal Com-
ponent Analysis but Random Mapping has two important advantages. It
is faster and can be used online (i.e. without knowing all other vectors).
The second advantage is very important, if preprocessing occurs distributed
among many computers, because the Random Mapping can reduce vectors
in parallel without considering other vectors.

CHAPTER 5. MAPPING 36

The RM Agent - a Mobile Agent

As described in Chapter 4 the preprocessing can occur on different market-
places running on different systems. The Random Mapping reduces the space
dimensionality (the information), so it makes sense to place the RM agents
(RM for Random Mapping) on the preprocessing marketplaces. This design
has two advantages: parallel processing of the documents is much faster then
central processing at the mapping marketplace and the dimension reduction
decreases the network traffic, too.

In some cases these advantages may become unimportant, for example
if the central marketplace runs on a very powerful environment, only one
preprocessing marketplace exists, and/or the network is very fast. In this
cases the agent should be central placed on the mapping market.

The most flexible solution is a mobile agent which can be sent to any
marketplace. The preprocessing marketplace can allow the migration of a RM
agent from the central marketplace, if it trusts this marketplace. The meta
data can be used by different search engines (not only for LSA) and a content
provider can make its repository public, allowing agents like the RM agent
to migrate and use their databases. If the content provider does not allow
migration (for example because the capacity of the runtime environment is
not powerful enough to run so many agents) the meta data can be read from
the central marketplace of the search engine.

ARISE allows the administrator to send the RM agent to any market-
place he wishes. He specifies the meta database and the URL of the target
marketplace. Then the agent migrates, reduces the dimensionality of all vec-
tors, sends them to the database of the central marketplace and travels back
to its home marketplace. It is possible to specify a start ID, so that only
documents with a greater ID are reduced and sent. This is an effective way to
make an update of new documents from a meta database, it is not necessary
to reduce preexistent document vectors again.

5.2 Principal Component Analysis

The objective of the Principal Component Analysis (PCA) is to reduce the
dimensionality of vectors and to identify new meaningful underlying dimen-
sions (variables). The idea is to find a lower-dimensional subspace of the
high-dimensional vector space where all document vectors can be projected
onto with a minimum of information loss. Figure 5.3 shows the geometri-
cal interpretation of an example: Two dimensions X and Y show a relation
(Figure 5.3 a), with an increasing of X there is an increasing of Y, so the
Principal Component Analysis identifies a one-dimensional subspace where

CHAPTER 5. MAPPING 37

(@) (b)

1-dimensional
subspace

v

1-dimensional
subspace

Y-AXis
+

v

X-Axis

Figure 5.3: An PCA example: a 2-dimensional data set is projected in an
1-dimensional subspace

all points can be projected onto (Figure 5.3 b).

For the LSA that means very simplified worded: If the PCA recognizes,
that in many documents an increasing of the quantity of one word causes
the increasing of the quantity of another one, both are “merged” to one
dimension. This is the intention of the LSA. Words with relations between
them, like “botany” and “plants” have to be set to one dimension. So two
texts would be similar, if one often contains the first word and the other the
latter.

It is clear that this technique cannot be implemented as an online algo-
rithm, because if relations between components of vectors have to be found,
these vectors must all be known. So the agent which performs this analysis
has to be placed on the central marketplace.

The PCA Implementation

Since the theory of the PCA and the most details of the implementation are
discussed in the diploma thesis of Richard Cissée [Cis01] (who implemented
the algorithm), only the important and interesting details about the PCA
agent in the ARISE system are discussed in this subsection.

The first step of the PCA is the creation of the so-called covariance matrix.
Since all vectors have to be considered the creation is very memory consum-
ing. In the ARISE system the PCA agent gets all vectors successively from
the database, so memory is saved but the process is rather time-consuming,
because every vector has to be read a second time from the database at the

CHAPTER 5. MAPPING 38

end of the PCA. The covariance matrix is stored in a text file, because it is
needed again for the querying marketplace.

The next task is determining the eigenvalues of the covariance matrix.
There a two possible ways, a numerical one and an approach with an feed-
forward single-layer neural network. These networks are much faster with
high-dimensional input vectors, but because the dimensionality is already
reduced by Random Mapping, the first technique is sufficient, in fact it is
faster than the neural network for small (lesser than 1000) dimensions.

After determining the eigenvalues of the covariance matrix the new vec-
tors can be created. For this every input vector has to be read a second time
(because they are not stored at the agent). The output vectors are stored in
the database, although it would be possible to send them directly to the SOM
agent. But especially if some parameters have to be tested® it is useful to
have the vectors of the PCA stored, because then there is no need to start this
process a second time. Another reason is, that the very memory-expensive
SOM agent can be started stand-alone if there are memory lacks.

5.3 Self-Organizing Map

After the vectors are reduced and the principal components are determined
the creation of the Self-Organizing Map starts. The SOM is a neural network
which is trained with the output vectors from the PCA.

The implementation of the algorithm is part of the diploma thesis of
Richard Cissée [Cis01]. We decided to store the final Self-Organizing Map
in an Java serialized object, so that other agents may use the results of the
Latent Semantic Analysis without having access to a database server. A
typical scenario is the querying marketplace as described in the next chap-
ter. The serialized objects contain not only the network, but also they hold
information about every document (title and URL).

The database could be theoretically erased after the creation of the map,
but in most cases it is useful to keep at least the vectors which are reduced
with Random Mapping, because they can be reused for updates. In some
cases all data can be deleted, for example in news systems, which have to
update articles every day.

3like the neighborhood radius of the SOM

CHAPTER 5. MAPPING 39

5.4 Database

The large amount of data that arises during the mapping process makes
it advisable to store intermediate results. Especially the reduced vectors
after being processed by Random Mapping have no dependencies from other
vectors and do not have to be recalculated each time after an update with
new documents. To access databases, the agents can use the same agent as
on the preprocessing marketplace: the SQL agent.

5.4.1 Data Model

T_DOCUMENTS_MAIN T_RANDOM_MAP
PK,FK1,FK2 | DBID LONG *
PK,FK1,FK2 [DOCID LONG —P
DBID LONG
NAME TEXT(256) DOCID |LONG
LOCATION | TEXT(256) ID LONG
VALUE | DOUBLE

T_PCA_MAP

» |DBID |LONG
DOCID |LONG
ID LONG
VALUE | DOUBLE

Figure 5.4: Master data model

The data model of the ARISE master database consists of the following
three tables: T_DOCUMENTS_MAIN, T_ RANDOM_MAP and T_PCA_MAP.
The table T_DOCUMENTS_MAIN contains information about the documents,
i.e. the title and the location, the ID of the document database (zero, if
only one document database exist) and an unique document ID. The table
T_RANDOM_MAP contains for every document the values in each dimension
(ID) after the Random Mapping process. The database ID and the docu-
ment ID are the same as in T7_DOCUMENTS_MAIN. This ID consisting of
two parts is necessary to allow the parallel work of several RM agents without
synchronisation. It guarantees that different documents never get the same

CHAPTER 5. MAPPING 40

ID, even if they have the same one on different preprocessing marketplaces.
The database ID have to be set by the administrator of the ARISE system.
The table T_-PCA_MAP contains the document vectors after the PCA.

5.5 Administration

7T) ARISE Master Administration Tool £ - 0] x|
Create SOM | abel SOM Delete Documents
Reduce Dimension
Target market: !cpip:ﬂlncalhnst'ﬁﬁﬁﬁ
Target meta database: jdbc:odbc ARISE_Documents
Database id: 1
First document id: 1
Reduce Dimension
PCA and SOM
Make the PCA
Make the SOM

Figure 5.5: The administration agent

To handle the creation of SOMs a special administration agent was im-
plemented (see Figure 5.5).

For Random Mapping the target market and the target meta database
have to be set, the administator has to choose a database ID and to determine
the start ID. Only documents with a higher ID will be reduced (see section
5.1 for details). The parameters of the PCA and the SOM (dimensionality)
cannot be altered without a restart of the system because any change during
the run of system can endanger the system integrity of ARISE.

Finally, it is possible to view documents stored in the database and to
delete some (or all) of them, like in the Administration agent of the prepro-
cessing market. Documents with the same URL can be searched.

Labeling the SOM

Labels are tools which facilitate the interpretation of a map by a human
user by adding some descriptive words. These words summarize aspects of
the area containing the label and act as landmarks. In this way, an easy
orientation is provided.

CHAPTER 5. MAPPING 41

:

current node: 44, 15
label?

T —

16 = IRAP - Abstracts: Holsti 1 (1) 51
1376 = IRAP -- Abstracts: Inoguchi and Bacon 1 (1)1

Figure 5.6: Creation of labels with the administration agent.

With the Administration agent the administrator can set labels for the
current SOM. The graphical user interface allows him to view all documents
and set new labels at prominent points (see Figure 5.6).

Of course there exist some techniques of automatic keyword labeling. One
was introduced by Kaski and Lagus [LK99] in 1999. These technique allows
the creation of keywords for clusters (implying a cluster structure exists) or
map areas. A labeling is only necessary for human users, for most agent
applications (see section 8.1) it is not necessary because only the agents
will use the maps. Due to this and to the fact, that the techniques for
automatic labeling are expensive, a manual labeling system was considered
to be sufficient for the purposes of the ARISE system.

Chapter 6
Querying

After preprocessing the documents and calculating the map the user must
be provided with the possibility to send queries to the system and view the
search results. A third marketplace executes this service. In order to do this,
an interface is needed to allow human users to interact with the multi-agent
system. Such an interface is introduced with the DAI Navigator in section
6.2.

Navigator Navigator

PCA Agent

Agent

Figure 6.1: The ARISE querying marketplace

On the querying marketplace there are three already known agents: the
SOM agent, the PCA agent, and the RM agent (see Chapter 5). Every query
is handled as a new document (with the exception that it is not stored in the
database). Additionally, there are two new agents on this marketplace. The

42

CHAPTER 6. QUERYING 43

query agent is responsible for managing the queries. The alter ego agent acts
as an interface between the DAI Navigator and the agent system and will be
explained in section 6.2.

Since all relevant information is stored in two files (covariance matrix and
SOM) this marketplace can run without a database server. It is therefore
possible to create a very small server (with low memory and CPU capacity)
without the other marketplaces (preprocessing and mapping). As a conse-
quence, the files may be even downloaded by a mobile communication device
like a PDA and then used locally.

Updates of the querying market are very simple. It is possible to overwrite
the PCA matrix and SOM files with newer versions even when the system is
running. Whenever the agents recognize a change on these files, they update
their data. The simple handling of updates is important for systems which
often generate new SOMs, for example in systems generating newsletters
every hour (see section 8.1 for details).

6.1 Processing of a User Query

The probably most interesting agent of the querying marketplace is the Query
agent, which controls the handling of user queries. It generates a vector from
the query string in a similar way as described in section 4.3 (it is not necessary
to extract the plain text before because the queries are already written in
plain text). Then it sends this vector to the RM agent, PCA agent and SOM
agent (in this sequence) and gets the Best-Matching Unit (BMU) as shown
in figure 6.2. The BMU is the node of the SOM neural network, which is
most similar to the document vector.

6.2 DAI Navigator and Multi-Access-Point

The handling of queries is organized in a client-server-architecture with a
central server storing the maps and calculating the queries and a graphical
user-interface as client. There are two possible approaches for such an archi-
tecture: The “thin client” is a low-cost, centrally-managed client component.
The whole functionality is provided by the server, which handles all interac-
tions. The greatest advantage of this architecture is, that it has minor system
requirements on the client side. For example, web interfaces (without Java
or Javascript) are “thin clients” allowing a user to access programs with a
simple web browser. The “thin client”, however, has three main disadvan-
tages. It produces a large amount of network traffic between server and client
since every function called by the user results in client-server-communication.

CHAPTER 6. QUERYING 44

: 1. Sends query AlterEgoAgent
Navigator
_ _ (QueryGUIAgent)
10. Delivers point
2. 9.
ForwarForwards
query BMU
. . N\
Dimensional 3. Sends preprocessed vector
Reduction for dimension reducing
(R|\/| Agent) 4. Delivers reduced vector ——p»
~
Transformation [«—5. Sends vector for transformation —
(PCA Agent) L 6. Delivers transformed vector—=| Query Handling
J (Query Agent)

Determination:
BMU
(SOM Agent) 8. Sends BMU back————p»

7. Sends PCA vector for getting BMU —

- J

Figure 6.2: Data flow of the querying marketplace

In addition, this very communication makes this approach slow, especially
if used with low-performance communication channels. Finally, thin clients
cannot provide rich functionality, for example, HTML-Forms provide only
some simple input components.

The other approach is called “thin server”. As the name indicates, this
architecture has a more complex client and the major part of functionality is
on client side. Often they are only started by the server and run stand-alone
(like applets). They are faster as “thin clients”, because simple interactions
do not cause communication with the server. They do not overload the
server and can offer all possible user input components. But “thin server”
architectures have disadvantages, too. The most striking one is the larger
amount of system requirements on the client side. This includes additional
non-standard software and hardware components. Often the client has to be
installed locally before using it, otherwise the invoking of the clients would
be very time-consuming.

CHAPTER 6. QUERYING 45

The DAI Navigator is a hybrid of both architectures. Technically it is an
agent which allows a human to use services through a Java Swing interface
(see Figure 6.3). It was developed at the DAI-Lab' for invoking complete
GUlIs by downloading the GUI files? from the server. So it is possible to use
multiple instances of GUI services without installing the files of the service
provider locally.

Since it needs the installation of a Java Runtime Environment and the
JIAC IV platform the DAI Navigator is no real “thin client”. However, the
using of Java and Swing allows the creation of complex GUIs and functionali-
ties without communication with the server. It is therefore logical to develop
a “thin server” architecture when implementing a Navigator interface.

EUAI MNavigator ;lglil

Senvice ARISE Query i E

@ Dienste o
@ ARISE Query (_hﬂjﬁ

quenygui Search description

Document Map

- ol

Search radius: 1l commerstogetme ..

="

Figure 6.3: The DAI Navigator

Currently a new interface for human-to-agent communication with JIAC
is being developed. With the Multi-Access-Point (MAP) it is possible to cre-
ate a specification for a graphical user interface with XML [ABF01]. With
this specification the Multi-Access-Point creates the interface in HTML or

I'DAI - Distributed Artificial Intelligence
2Java classes

CHAPTER 6. QUERYING 46

WML, depending on the browser® preferred by the user. With the MAP
a “thin client” architecture is necessary since only simple input-output-
relations are possible.

Since this MAP is highly experimental and unstable our implementation
is based on the DAI Navigator, although it would be nice to use the ARISE
system via webbrowser. To use the full advantages of the DAI Navigator the
ARISE query client is implemented in a “thin server” architecture.

6.3 The Graphical User Interface

-Search description E 1
The ahsence of a solid amorphous aluminosilicat
synthesis solution throughout the course of the E |
crystallization permits the use of analysis technigu| || il
comman within the field of colloidal science, |
i.e. dynamic lght scattering and ultracentrifugation) || |

1. SAR Remote Sensing of Forests, from Microwaves to V... httpiiwww2 lib.chalmers.seicthidissidoc/97981sr aelss...
H-Sense Abstract: Creating a harhor sediment databas... http:/mjs.geol.uib.noHsenseipublicationsipublic/icats 19...
H-Sense Abstracts: CATS IV Meeting Antwerpen 1999 (... http:/hjs.geol.uib noHsense/publicationsipublic/cats19...
DINE N hitte: b korss ae kriviv il

Figure 6.4: The ARISE graphical user interface

The Graphical User Interface of the ARISE system is very easy to use.
One panel contains the map (SOM), which has to be loaded from the alter-
ego-agent. At this panel the user can choose a position with the mouse. As
a result documents in the neighboring area will be presented in a table at
the bottom of the GUIL. With a double click at the documents of the table a

3any webbrowser or WAP device is possible

CHAPTER 6. QUERYING 47

document viewer is started and shows the document content. It is possible to
control the number of shown documents indirectly with a search radius slider.
The presentation of the document list is very quick (only some milliseconds)
because all information is stored on client side.

Everytime a query has to be processed, it is sent to the agent system,
which returns the coordinates in the map. On the left side there is a panel
for user queries, it is possible to paste text from the system clipboard, so
that complex texts can be copied from other locations.

Every instance of the GUI gets the current version of the SOM. The
DAI-Navigator does not provide a concept for session handling, so it is not
possible to inform active clients about new SOMs.

Chapter 7

Evaluation

In this chapter the results of the implemented approach are evaluated with a
special focus at the scalability, reusabilty and performance of the implemen-
tation.

7.1 Reusability

During the implementation phase of the ARISE system a main focus was
set, to the reusability of the system and its components, services and agents.
The JIAC components contain Java classes which can be reused for other
purposes.

The agents can be easily integrated in other projects. Especially some in-
frastructure agents can be reused in new JIAC IV applications. This includes
the SQL agent for updating and querying a database and the download agent
for getting documents from the WWW. All parameters of the agents of the
ARISE system can be controlled by agent configuration files, so no recompi-
lation is necessary in order to use them in another context. For example, by
changing a few lines in the configuration file of the SQL agent it can be used
for every database (provided it exists an applicable driver):

de.dailab. jiac4la.arise.sql.bean.SQLBean.driver=
sun. jdbc.odbc.JdbcOdbcDriver
de.dailab. jiac4la.arise.sql.bean.SQLBean.database=
jdbc:odbc:ARISE_Documents

The agents of the information retrieval system (SOM agent, RM agent
and PCA agent) can also be reused, although it is not likely that they re-
ally be used for really other purposes. However, the AI methods can be

48

CHAPTER 7. EVALUATION 49

used for other purposes, Principal Component Analysis (PCA) and SOM
are techniques, which can be used for various forms of data mining. The
Random Mapping is well suited for dimension reduction and can be used for
information compression.

Finally, the whole ARISE system can be embedded in another agent
application. A suggestion for an application, a personal newsletter system,
is made in section 8.1.

7.2 Scalability

One important aspect of every implementation is the possibility to scale it
depending on the complexity of the problem to solve. For the ARISE system
a multi-agent platform was used to handle scalability. As described in the
previous chapters, most parts of the LSA can be distributed. The JIAC IV
multi-agent platform is well suited for the distribution of the ARISE system,
because all communication between agents and components is organized by
JIAC IV, no further implementation is needed.

The costs of preprocessing increase linearly with the number of documents
one has to preprocess. The tests with the ARISE implementation use a
collection of 1400 documents from different sources. Preprocessing can be
executed in parallel on different marketplaces (on different computers), so the
performance of the system is increased with the addition of new preprocessing
marketplaces. If several marketplaces overextend the database server, it is
even possible to use several databases. One possible bottleneck in the ARISE
system is the download of documents, especially if the network has only a
slow internet connection. If some agents are too slow, it is possible to place
them on their own marketplace on another computer (for further details see
Chapter 4).

The mapping marketplace has not such a good scalability as the pre-
processing marketplace. As described in Chapter 5 it is possible to run the
Random Mapping (RM) agent in parallel in the same way as the preprocess-
ing agents. But the Principal Component Analysis (PCA) and the creation of
the Self-Organizing Map (SOM) cannot easily run distributed. Especially the
costs for the SOM increase rapidly with an increasing number of documents.
One possible solution to decrease the costs of this algorithm is a so called Hi-
erarchical Self-Organizing Map (HSOM), which will be explained in section
8.1. The PCA costs increase nearly linearly, but since it cannot be computed
in parallel, the current hardware is the bottleneck for this algorithm. Admit-
tedly it is possible to compute the covariance matrices (see section 5.2) in
a distributed way and add them centrally, this may decrease the execution

CHAPTER 7. EVALUATION a0

time of this part of the PCA slightly. But even with these modifications both
techniques (PCA and SOM) are the most time-consuming parts of the ARISE
system. The SOM agent needs almost half an hour for the creation of the
map for a collection of 1400 documents® by an input vector dimensionality
of 10.

For the querying marketplace the complexity of the document space is
almost unimportant. Only the transmission of the serialized SOM following
each service request increases, but this problem can be solved with the use
of a Hierarchical Self-Organizing Map (HSOM) (second layer SOMs can be
loaded dynamically only if they are needed). The time for searching the Best
Matching Unit (BMU) increases but is still very small. It is possible to install
several querying marketplaces to handle a large amount of queries, provided
that every marketplace has the same SOM. The distribution of queries can
either be handled by the users (which choose among the service providers) or
by an agent, which distributes the queries over the marketplaces, depending
on their workload. Such an agent has still to be implemented.

Multiple Users

The query service is available for several users. With increasing number of
users the time lag? increases, too. The most simple way to handle this prob-
lem is invoking new instances of the querying marketplaces (i.e. increasing
the number of query service providers). So the user can choose a provider
and if it is to slow, he can try another one. An more elegant possibility is to
invoke only one alter-ego-agent, and enhance its capabilities so that it can
choose a provider which can handle this query. So it can distribute the load
of queries and the user does not have to choose a provider manually.

7.3 Performance

Although the performance of Java has increased in the recent years, Java-
based applications are still slower than platform-dependent programs written
in C/C++ [S0s99]. Of course there are some possiblities to increase the per-
formance which are actually used in the ARISE implementation (see [Jav01]).
This lower performance is the price for platform independency, i.e. the pos-
siblity to use the same application on different systems and architectures.
Since JIAC IV bases, like some other multi-agent systems, on Java, its per-
formance is not very high.

'Hardware: PC, Athlon 1 GHz, 256 MB RAM
%i.e. the time difference between user query and the incoming of the query result

CHAPTER 7. EVALUATION o1

The collection of 1400 documents used in this thesis can be processed
with the single CPU system described in the previous section in 2.5 hours.
Since JIAC IV applications can be implemented as distributed systems it is
possible to increase the performance by running some tasks in parallel and
computing time-consuming processes on different CPUs.

Chapter 8

Conclusion

As a result of this thesis the ARISE multi-agent system was implemented. It
is a text retrieval system using Al methods which allows the searching, visu-
alization and exploration of document collections. It analyzes the document
contents and uses maps to visualize the relations among the documents. Due
to the complexity of the text retrieval algorithms the implementation relies
on system distribution.

In this thesis it has been shown that the multi-agent platform JIAC IV is
an effective solution for problems needing a distributed architecture. Due to
the distribution the implemented solution is very scalable. The loss of perfor-
mance caused by the use of a Java-based agent toolkit can be compensated
by running time-consuming parts of the system in parallel.

Furthermore JIAC IV agents are well suited for searching and handling
of documents of various types due to the inclusion of Java components!, and
their basic problem solving mechanisms. These mechanisms allow the nearly
self-organized text-extraction from documents.

The ARISE system is easy to reuse, it can be included in more complex ap-
plications (see 8.1) or used stand-alone. Furthermore it provides some generic
functionality, like database access, document processing, and download from
the World Wide Web (WWW) that are reusable for various applications.

The Latent Semantic Analysis in combination with SOMs represents an
important enhancement of the abilities of intelligent agents. Since agents
are meant to reproduce human behavior and thinking to some extent, this
information retrieval system is a natural step in this direction. The concept
of “similarity” of texts is very important for agents which have to act in
favour of humans.

Lallowing the usage of various Java class libraries for different text formats

52

CHAPTER 8. CONCLUSION 53

8.1 Outlook

Inspite of the very good results achieved with the ARISE system, there is
still room for improvement. As described in the introduction, “normal” text
matching search engines combine several algorithms to enhance their results.

Naive Bayes

Keyphrases are words or phrases which are very important for the meaning
of the text. Usually authors add a litte list of keyphrases manually, but
assigning keyphrases to existing documents is very laborious. For this there
exist some approaches for keyphrase extraction based on the naive Bayes
learning scheme [FPW™99]. This approach may be a good supplementation
for the ARISE system, since it can be used for automatic labeling and to
introduce a weighting scheme into the LSA.

Stemming

As described in section 4.3 the ARISE system is unable to detect inflections.
There exist stemming tools for several languages. Some demos can be tested
at LingSoft [Lin01]. These tools could be used to detect and replace in-
flections. The easiest way to integrate a stemming algorithm would be the
Porter’s algorithm, but there exist variants for a few languages only and it
is an heuristic algorithm.

Hierarchical Self-Organizing Maps

In section 7.2 the problem of the increasing computing time for SOMs was dis-
cussed. One possible solution are multilayer or Hierarchical SOMs [Lam92).
In a multilayer SOM documents are organized in a hierarchical structure.
The first layer is a SOM with only a few hundred nodes which separates the
documents in many groups. Subsequently a second SOM is trained for each
group. This means that on the first layer of the Hierarchical Self-Organizing
Maps (HSOM) one obtains a rather rough representation of the input space
but with descending hierarchy the granularity increases. For every layer the
Best Matching Unit (BMU) has to be computed in case of a user query.

Such an approach is especially well suited for the representation of the
contents of a document collection. The reason is that document collections
are inherently hierarchically structured with respect to different subject mat-
ters (this is essentially how conventional libraries have been organized for
centuries).

CHAPTER 8. CONCLUSION 54

Multiple Languages

A problem is the handling of multiple languages. The ARISE system sup-
ports the usage of different stop lists (see section 4.3), but it is difficult to
create a stop list usable for multiple languages simultaneously. It makes sense
to first determine the language of a document and store documents different
languages in different SOM’s.

There are several methods to determine the used language, but it is also
possible to use the ARISE system, if used in the following way: A SOM has to
be trained with example documents from all languages (the same number of
documents for every language). Because documents of one language are more
similar than documents of different languages, the resulting clusters represent
the languages. It is not necessary to initialize a stop list for this process,
because “unimportant” words are characteristical for a language. With a
cluster analysis it is possible to decide, to which cluster a new document
belongs, i.e. in which language it is written. This is a special form of a
multilayer SOM, because the first layer only represents the language, the
second one the documents written in this language.

Of course, the implementation of a LSA-based text retrieval for multiple
languages is a very complex problem. Beside creating SOMs, stoplists and
stemming algorithms for every language it is necessary to implement a cluster
analysis.

Web Interface

During the implementation of the ARISE system a new concept was de-
veloped at the DAI-Labor. The Multi Access Point (MAP), introduced in
section 6.2, is highly experimental and some features needed for a search
engine with a graphical representation are still not implemented, but it will
soon be possible to implement a web interface for the ARISE query service.

Applications

Although the ARISE system can be used as a prototypical stand-alone search
engine it was originally designed to enhance the abilities of JIAC IV agent
systems. Before an agent can act for a human, it has to understand the
wishes and intentions of its user. The ARISE system allows the agents to
compare textual descriptions, an interesting ability for Filtering-by-example.
Filtering-by-example is an information filtering method that enables a user
to refine filtering results by indicating examples of what he or she wants
(content-based filtering). Product descriptions for example can be matched
with the queries of a consumer, so it is possible to give a specification of the

CHAPTER 8. CONCLUSION 95

kind of book one is looking for and the agent delivers a list of books available
for this subject (or it orders the books).

Another operational area is personal information management. The num-
ber of services allowing the user to specify personal newsletters is increasing.
But most of them allow only the choice of some predefined categories. With
the ARISE system it is possible to create own categories, containing textual
descriptions (which can be enhanced at any time). These descriptions can be
considered as documents and a vector can be created. So documents which
have a position near to the positions of the category vector are added to the
newspaper. The term “near” could be trained by the user by evaluating the
chosen articles of recent newsletters.

“Personal News” is the name of a new internal project of the DAI-Lab. It
uses large parts of the ARISE system. The user has the possibility to create
own categories and to organize them in a tree-like structure. He or she can
describe the categories textually. The “Personal News” system compares the
vectors of these textual descriptions with news articles in a SOM generated
every day. If some documents are in neighborhood of one of these vectors,
the documents are added to the newsletter. The complete newsletter is sent
to the user via e-mail. It makes sense to combine this method with the naive
Bayes algorithm introduced before to enhance the accuracy of the results.

Appendix A

List of Abbreviations

Al

AOSE

API
ARISE
BMU

DAI
FIPA-ACL

GUI
HSOM
HTML

IR
JDBC
JIAC IV
JVM
KQML
LSA
OCR

Artificial Intelligence

Agent-Oriented Software Engineering

Application Program(ming) Interface

Agent-based Readjustable Intelligent Search Engine
Best Matching Unit

Distributed Artificial Intelligence

Foundation for Intelligent Physical Agent - Agent Communication Lan-
guage

Graphical User Interface

Hierarchical Self-Organizing Map

Hyper Text Markup Language

Information Retrieval

Java Data Base Connectivity

Java Intelligent Agent Componentware IV
Java Virtual Machine

Knowledge Query and Manipulation Language
Latent Semantic Analysis

Optical Character Recognition

26

APPENDIX A. LIST OF ABBREVIATIONS

PCA
PDF
PS
RM
RTF
SOM
SQL
TCP/IP
URL
WML
WWW
XML

Principal Component Analysis
Portable Document Format
Postscript

Random Mapping

Rich Text Format
Self-Organizing Map
Structured Query Language
Transmission Control Protocol/Internet Protocol
Uniform Resource Locator
Wireless Markup Language
World Wide Web

eXtensible Markup Language

o7

Bibliography

[ABF01]

[Acr01]

[AIb9S]

[AW99]

[Ban94]

[BBCM93]

[Brag87]

[Bra97]

[Can01]

Sahin Albayrak, Joos-Hendrik Bose, and Sebastian Feuerstack.
Multi Access Point fiir JTAC, 2001.

Acronym Finder: Look up 206,000+ acronyms/abbreviations &
their definitions, 2001. http://www.acronymfinder.com/.

Sahin Albayrak. Introduction to Agent Oriented Technology
for Telecommunications. In Sahin Albayrak, editor, Intelligent
Agents for Telecommunication Applications, pages 1-18. 10S
Press, Amsterdam, Berlin, Oxford, Tokyo, Washington DC, 1998.

Sahin Albayrak and Dirk Wieczorek. JIAC - A Toolkit for
Telecommunication Applications. In Sahin Albayrak, editor, In-
telligent Agents for Telecommunication Applications, pages 1-18.
Springer, Berlin, Heidelberg, New York, Barcelona, Hong Kong,
London, Milan, Paris, Singapore, Tokyo, 1999.

Martin Bangemann. The Bangemann Report: Europe and the
global information society. 1994, 1994.

M. Breugst, 1. Busse, S. Covaci, and T. Magedanz. Grasshopper
— A Mobile Agent Platform for IN Based Service Environments.
In Proceedings of IEEE IN Workshop 1998, pages 279-290, Bor-

deaux, France, 1998.

M. Bratman. Intentions, plans and practical reason. Harvard
Univ. Press, Cambridge, MA (USA), 1987.

Jeffrey M. Bradshaw. Software Agents. AAAI Press, Mento Prak,
USA, 1997.

Canoo - Sprache lernen: interaktive Anwendungen und Commu-
nity. Homepage, 2001. http://www.canoo.net.

o8

BIBLIOGRAPHY 29

[Cau99]

[Cis01]

[Dai01]

[DARO1]

[DDL*90]

[Ety01]

[FT93]

[FBK*01]

[FFMMO4]

[FIP97]

[Fol96]

Jorg Caumanns. A Fast and Simple Stemming Algorithm for
German Words, 1999. http://www.inf.fu-berlin.de/inst/pubs/tr-
b-99-16.abstract.html.

Richard Cissée. Neural Information Processing Methods for
Agent-Based Intelligent Information Retrieval. Diploma thesis,
Technische Universitat Berlin, 2001.

JIAC - Intelligent Agent Componentware. Homepage, 2001.
http://www.dai-lab.de/jiac/index_en.html.

DARWIN Digitale Naturwissenschaftliche Bibliothek der FU
Berlin. Homepage, 2001. http://darwin.inf.fu-berlin.de/work/
Main/.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by La-
tent Semantic Analysis. Journal of the American Society of In-
formation Science, 41(6):391-407, 1990.

Etymon Systems Inc.: PDF Products. Homepage, 2001.
http://www.etymon.com/pdf_products.html.

Tim Finin et al. Specification of the KQML Agent-
Communication Language — plus example agent policies and ar-
chitectures, 1993.

Stefan Fricke, Karsten Bsufka, Jan Keiser, Torge Schmidt, Ralf
Sesseler, and Sahin Albayrak. A Tool-kit for the Realization of

Agent-based Telematic Services and Telecommunication Applica-
tions. Communications of the ACM, April, 2001.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an
Agent Communication Language. In Proceedings of the 3rd Inter-
national Conference on Information and Knowledge Management
(CIKM’94), pages 456-463, Gaithersburg, Maryland, 1994. ACM
Press.

FIPA. FIPA 97 Specification, Version 2.0, Agent Communication
Language, 1997.

P. Foltz. Latent semantic analysis for text-based research. Behav-
tor Research Methods, Instruments, and Computers, 28:197-202,
1996.

BIBLIOGRAPHY 60

[FPW*99] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin,

[Goo01]

[Jav01]

[Jdk01]

[JL84]

[Koh90]

[KP94]

[Lam92]

[Lin01]

[LK99]

[MNOSg]

[Por80]

and Craig G. Nevill-Manning. Domain-Specific Keyphrase Ex-
traction. In IJCAI, pages 668-673, 1999.

Google Search Technology - Our Search: Why Use Google. Home-
page, 2001. http://www.google.com/technology/index.html.

Java Performance Tuning. Homepage, 2001.
http://www.javaperformancetuning.com.

java.sun.com - The Source for Java(TM) Technology. Homepage,
2001. http://java.sun.com.

W. Johnson and J. Lindenstrauss. Extensions of Lipschitz maps
into a Hilbert space. Contemp. Math., 26:189-206, 1984.

Teuvo Kohonen. The Self-Organizing Map. In New Concepts
in Computer Science: Proc. Symp. in Honour of Jean-Claude
Simon, pages 181-190, Paris, France, 1990. AFCET.

W. Kraaij and R. Pohlmann. Porter’s stemming algorithm for
Dutch. In L.G.M. Noordman and W.A.M. de Vroomen, editors,
Informatiewetenschap 1994: Wetenschappelijke bijdragen aan de
derde STINFON Conferentie, pages 167-180, 1994.

Jouko Lampinen. On Clustering Properties of Hierarchical Self-
Organizing Maps. In I. Aleksander and J. Taylor, editors, Artifi-
cial Neural Networks, 2, volume 11, pages 1219-1222, Amsterdam,
Netherlands, 1992. North-Holland.

Lingsoft Demos - Lingsoft Language Sense. Homepage, 2001.
http://www.lingsoft.fi/demos.html.

Krista Lagus and Samuel Kaski. Keyword selection method for
characterizing text document maps. In Proceedings of ICANNY99,
Ninth International Conference on Artificial Neural Networks,
volume 1, pages 371-376. IEE, London, 1999.

A. McCallum and K. Nigam. A comparison of event models for
Naive Bayes text classification. In AAAI-98 Workshop on Learn-
ing for Text Categorization, pages 41-48. Madison, WI: AAAI
Press, 1998.

M. F. Porter. An Algorithm for Suffix Stripping. Program,
14(3):130-137, 1980.

BIBLIOGRAPHY 61

[Por00]

[Rij79]

[SBO1a]

[SBO1b]

[Sho91]

[S0s99]

[WCO1]

[WEBO1]

[Whi94]

Modern Information Retrieval - Porter’s algorithm. Homepage,
2000. http://sunsite.dcc.uchile.cl/irbook/porter.html.

C.J. Van Rijsbergen. Information Retrieval. Butterworths, Lon-
don, 2nd edition, 1979.

Ralf Sesseler and Siegfried Ballmann. JIAC IV Programmier-
Handbuch. DAI-Labor Berlin, 1.1 edition, 2001.

Ralf Sesseler and Siegfried Ballmann. JIAC IV Technisches
Handbuch. DAI-Labor Berlin, 1st edition, 2001.

Y. Shoham. Agent-oriented programming. In Proceedings of the
11th International Workshop on DAI, pages 345-353, 1991.

Dennis M. Sosnoski. Java Performance Comparison with C/C++,
1999. http://www.sosnoski.com/Java/Compare.html.

M. Wooldridge and P. Ciancarini. Agent-Oriented Software En-
gineering: The State of the Art, volume 1957 of Lecture Notes
in Al Springer, Berlin, Heidelberg, New York, Barcelona, Hong
Kong, London, Milan, Paris, Singapore, Tokyo, 2001.

WEBSOM - A novel SOM-based approach to free-text mining.
Homepage, 2001. http://websom.hut.fi/websom/.

J. E. White. Telescript Technology: The Foundation for the Elec-
tronic Marketplace. Technical report, 2465 Latham Street, Moun-
tain View, CA 94040, 1994.

