1 Introduction

Previously, most endgame theory has been informal go theory. Apart from com-
binatorial game theory applied to the microendgame and excursions of thermo-
graphy, we have known little more than the count and move value of a local
endgame. Bill Spight's pioneer work into the structure of relating local values to
each other and studying global model environments has enabled me to unfold
this new approach into the powerful, consistent and revolutionary endgame the-
ory in this book. Besides, it is very well applicable for us go players.

In the chapters 3 Local Endgame and 4 Long Sequences, we learn to evaluate
every local endgame correctly. In the chapters 5 Playing in an Environment to
10 Several Local Endgames Each with One Follow-up, we study the global
move order during the early or late endgame to decide in which local endgame
to play next. The chapter 2 Basics provides some necessary low level theory.

The chapter 11 Scoring relates area and territory scores as well as definitions of
life.

We analyse a local endgame to determine its count, move value and gains in the
initial position. While a simple local endgame has sequences of one or two
plays, it is more difficult to evaluate a local endgame with long sequences. Apart
from kos and exceptional types, 'local gote' and 'local sente' are the basic types
of a local endgame. They have gote counts and move values versus sente counts
and move values, respectively. We must determine the right values to avoid mis-
takes when choosing moves. Informal go theory has just guessed the type of a
local endgame so wrong values could be determined and mistakes could occur.

Instead, our theory also determines the correct type. Depending on the kind of a
simple local endgame, we can choose our favourite condition from up to four
equivalent conditions. Besides, we establish equivalence of Black's and White's
value perspectives, and the relations between counts, move values, gains or net
profits. Traditional go theory must change as we prove non-existence of a local
double sente.

Evaluation of a local endgame with long sequences requires iteration and bene-
fits from simplification. The means of simplification include: dominating op-
tions, reversal and playing the difference game; comparison of two particular
counts or move values; traversal of a sequence due to a comparison of its gains
to a move value. After simplification, we evaluate a local endgame with long se-
quences like a simple local endgame.

Informal go theory often made the wrong assumption that the global move order
could always be decided by playing in order of decreasing local move values.
Instead, our theory for the global move order decides whether the correct next
play is in a considered local endgame or in the global environment. For this pur-
pose, we consider an alternating sum, such as AT, of all move values in the en-



vironment during the late endgame to make an exact decision. During the early
endgame, our decision is a good approximation typically depending on the tem-
perature T, which is the largest move value in the environment, and our estimate
of the value T/2 of first playing in it. We decide by comparing such global val-
ues to local values, such as the move value M and follow-up move value F of the
local endgame.

For the global move order during the early or late endgame, we consider an en-
vironment when studying the basic kinds of local endgames with one player's
follow-up, both players' follow-ups, or a player's alternative gote or sente op-
tions. We also touch the decision-making among several local endgames.

The global move order depends on being in the early versus late endgame, the
starting player making his follow-up available and the temperature being 'high'
(larger) versus 'low' (smaller than the follow-up move values). For many de-
cisions, we avoid too complex tactical reading by providing these three equival-
ent fast methods: applying a principle, comparing two or three counts, or com-
paring two net profits. We enable further simplifications by ignoring superfluous
values or cases.

In conclusion, we do not just fill a few gaps of informal go theory; instead, we
invent a well developed new endgame theory of evaluation and decision-making
on the local and global scales. We establish the theory as mathematical theorems
and their proofs.

Unlike combinatorial game theory for the microendgame, the theory in this
book allows large move values. Unlike the theoretically more powerful theory
of thermography with its general definitions of 'mean values' and 'local temper-
atures', our consideration of 'counts' and 'move values' is more applicable during
our games.

We ignore equal options, which can sometimes allow alternative strategies but
are irrelevant for the basic structure of the proofs. The book does not include re-
search on hyperactive kos and dame ko fights because this deserves an extra
book. Future research should study: a) the close relation between traversal, re-
versal and difference games, their missing identity, and existence of pathological
examples for which they differ; b) more theory on kos and threats than in the lit-
erature; c) detailed theory on difference games; d) more relations to combinato-
rial game theory and infinitesimals.

Bill Spight started mathematical research long ago and I continued it in winter
2016/7 and 2021. While I could sometimes prove up to four theorems of inter-
mediate difficulty per day, every hard proof required a few days, and each of
theorems 55 and 58 three weeks of work. See also 13.2 Inventors (p. 237).
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simple gote without follow-up

A simple gote without follow-up is a local endgame with the settled black child
with the count B and settled white child with the count W. An unsettled initial
position implies B > W.

Definitions 11 [gote values]

A simple gote without follow-up has the

gote count C:=Ccore:=(B+ W)/ 2,
gote move value M := Mcote := (B-W) / 2.

Remarks

A gote count is calculated as the average of the followers' counts. A gote move
value is calculated as half their difference value. If the initial position is un-
settled, we have B > C > W. Except for a settled local endgame, a simple gote
without follow-up is the simplest kind of a 'local gote'.

Definitions 12 [gains]
Black's gain is G := B - C, where B is the count of the black child,
White's gain is Gw := C - W, where W is the count of the white child.

Remarks

These definitions apply to all positions and follow-ups of all local endgames.
The inconsistent traditional endgame theory does not use the division by 2 and
therefore discourages all advanced endgame theory. The modern endgame
theory in this book uses the division by 2 in the definition of 'gote move value'
so that the theory is consistent. In particular, for a simple gote, the move value,
Black's gain and White's gain are equal:

Proposition 10 [equality of move value and gains in a simple gote]

In a simple gote, M = Gs = Gw.
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Proof:Ge=B-C=B-(B+W)/2=B-W)/2=M=B-W)/2=(B
+W)/2-W=C-W = Gw.O
Remark: Proposition 10 is also a corollary of theorem 19.
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Example 1: C=-1, M =4 Dia. 1.1: Gp =4 Dia. 1.2: B=3

e

Dia. 1.3: Gw=4 Dia. 1.4: W=-5

Example 1: In the initial unsettled position, the local endgame is a simple gote
without follow-up. The black child, which is the direct follower after Black's
one move, in Dia. 1.2 is a settled position with the local count B = 3, which is
Black's 3 local points minus White's 0 local points. The white child, which is the
direct follower after White's one move, in Dia. 1.4 is a settled position with the
count W = -5, which is Black's 0 local points minus White's 5 local points. The
initial local endgame has the gote count C=(B + W) /2=3 +(-5))/2=-2/2=
-1 and gote move value M = (B -W)/2=3-(-5))/2=8/2=4.Black 1 in
Dia. 1.1 gains GB=B-C=3-(-1)=4. White 1 in Dia. 1.3 gainsGw=C - W =
-1-(-5) =4. We confirm M = Gg = Gw = 4 (see proposition 10) and B> C>W
<=>3>-1>-5. For example, the initial local endgame has the white-count C =
-C=-(-1)=1.

Presuppositions

Suppose the starting player's value perspective, simple gotes without follow-ups
and with the move values T1 =2 T2 = ... 2 Tn 2 0.

Theorem 11 [decreasing order]

Playing in order of decreasing-or-constant move values is correct.
Proof

Trivial for N = 1.

Now, let us prove for all natural numbers K, N with 1 < K < N.

We study the only differing moves 1 and K as follows. Let A2, As3,..., AN be ar-
bitrary indices so that {TA2,..., TAK,..., TAN} = {T2, T3,..., Tn}, alternating se-
quences S(T1, TA2, TA3,..., TAk-1, TAK, TAk+1,..., TAN) and S'(TAk, TA2,
TA3,..., TAk-1, T1, TAK+1,..., TAN).

Case K odd:

The starting player gains both T1 and TAk so S and S' result in equal scores.
Without loss of generality, choose S.

21



Case K even:

In S, the starting player gains T1 - TAk = 0. In S', the starting player gains TAk -

T1 < 0. Hence, choosing S is at least as good as choosing S'.00
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Example 2: 1t is correct to
play the simple gotes

e ‘e ‘* @@ Without follow-ups in or-
11 191 131 :91 f‘i der of their decreasing-or-
OO constant move values 3.5,

T 11 32150.5.

Example 2: move values Dia. 2.1: correct
3.2  Black's Follow-up
Introduction

We study the theory of Volume 3 chapter 3.3 about a local endgame with Black's
simple follow-up. Its conditions compare tentative values, which we define.
Conditions 1 compare sente count to gote count, Csen7e ? Ceore, conditions 2
compare gote move value to follow-up move value, Mcore ? F, conditions 3
compare sente move value to follow-up move value, Msen7e ? F, conditions 4
compare sente move value to gote move value, Msgn7e ? Mcore. Propositions 12
- 14 relate the conditions so theorem 15 can state their equivalence, we can
define the types of the aforementioned kind of local endgames and determine
their correct values.

Basic Definitions

A player's gote sequence is an alternating sequence of an odd number of moves
started and ended by him. A player's sente sequence is an alternating sequence
of an even number of moves started by him and ended by the opponent.
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local endgame with Black's follow-up

®
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Remarks

The propositions in the sections 3.2 Black's Follow-up to 3.7 White's Options
are for single moves, but future research and application can be extended to gote
sequences between the positions. Then, we would presume a) traversal of the se-
quences from the initial position to B or S and b) no necessity for more detailed
calculations due to rapidly changing move values or complications due to inter-
mediate plays elsewhere on the board. Unsettled initial position and black fol-

lower imply Bs > S > R.
Presuppositions and Basic Definitions

We have Black's local endgame with the initial position with the count C and
move value M to be determined, the count R of the white child and 'gote or re-
verse sente' follower, the count B of the follow-up's black child, the count Bw

= S of the follow-up's white child and 'sente sequence's' follower, the gote count
B := (Bs + Bw) / 2, and gote move value F := (Bs - Bw) / 2 of the black child
and follow-up.

Definitions 13 [tentative values]

The initial position of the local endgame has the
tentative gote count Ceore:= (B + R) / 2,
tentative sente count Csente := S,

tentative gote move value Msore := (B-R) / 2,

tentative sente move value Msen7e := S - R.

Remarks
In this section, the sente move value is Black's sente move value.

First, these are tentative values. Later, when a local endgame's type is deter-
mined, its fitting tentative values become its values.

A comparison ? being =, >, < identifies the 'ambiguous’, 'local gote', 'local
sente' conditions, respectively. ? inverts > and <.

Modern endgame theory evolves from the definitions of the tentative values.

Proposition 12 [conditions | and 2]

Csente ? Ceore <=> Mgsore? F.
Proof

Csente ? Ceore <=>@NS? B+ R)/2<=>B+R)/2?S <=>(B+
R)/2?Bw<=>B+R?2Bw<=>")-B-R?-2Bw<=>B-R?2B-
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2Bw <=>B-R?(2B-Bw)-Bw <=>(2B-R?Bsg-Bw<=>(B-R)/2
? (Bs - Bw) / 2 <=>N Meore? F.o

*1) Multiplication by -1 inverts the inequality sign.

*2) We apply B = (Bs + Bw) / 2 <=> 2B = Bg + Bw <=> 2B - Bw = Bs.

Proposition 13 [conditions I and 3]

Csente ? Ceore <=> Msente? F
Proof

Csente ? Coore <=>0NS?2(B+R)/2<=>25?B+R<=>S+S?B
+ R<=>S-R?B-S <=>04€) Meen7e? Fo

*) This transformation is possible because B - S = F <=> B - F = S, where
the move value F at the position B is subtracted because a) White gains so Black
loses it and b) the count B at the position B is transformed into the count S of B's
white follower S.

Proposition 14 [conditions | and 4]

Csente ? Ceore <=> Msente ? Msorte.
Proof

Csente? Ceore <=>@NS? (B+R)/2<=>25?B+R<=>25-2R?B
-R<=>S5-R?(B-R)/2 <=>6) Megy7e? Meore.o

Definitions 14 [basic types]

For a local endgame with Black's follow-up, we define these types:
ambiguous :<=> Msgnre = Msors,

local gote :<=> Msente > Mcors,

local sente :<=> Msen7e < McorE.

Table 1
Type Count Move Value
ambiguous C := Csente := Csewre M := MsenTe 1= Msenre =
= CcotE := CGOTE Mcote := Mcore
local gote C := Ccore := Csore M := Mcorte := Mcore
local sente C := Csente := Csenre M := MsenTE := Msente
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Calculus) for general explanations of thermography, its theorems, its proofs and
graphical representations of thermographs.

By applying definitions 9 of count and move value in a presumed rich environ-
ment, thermography determines their correct values for all temperatures.

We also presume no kos now or later. Extensions of thermography to kos exist

in the literature (for example, Combinatorial Game Theory, section VIL.5 Ko-
master Thermography).

Since the thermograph is defined as the pair (Br(P), W1(P)), thermography is
about computing Br(P) and Wt(P) as functions of T iteratively. Analogue to tac-
tical reading, we start from the settled positions and proceed backwards. We also
determine counts and move values of the position P and its followers.

The mappings of the walls Br(P) and Wt(P) are derived from the auxiliary map-
pings, called scaffolds, Bt(P) and wt(P), respectively. Br(P) and wt(P) might
overstretch and express either locally playing player's loss when Br(P) < wt(P)

for some ranges of T, for which we correct this by letting both mappings coin-
cide. As a result, we have Br(P) = Wr(P) for all T.

In graphical representations, the x-axis represents decreasing counts (Black fa-
vours larger counts further leftwards while White favours smaller counts further
rightwards) and the y-axis represents increasing temperatures T from O to ©o.
See the literature for an extension to -1 to 0.

Without kos and in the visual appearance of the aforementioned orientation of
the coordinate system, Black's segments increase by 45° (for @ - T terms repre-
senting gote) or are vertical (for constant terms representing his sente at positive
temperature). White's segments decrease by 45° (for @ + T terms representing
gote) or are vertical (for constant terms representing his sente at positive tem-
perature). Coinciding mappings have the vertical mast at Cp for T = Mp, above
which the players should play in the environment.

Algorithm 44 [calculating a thermograph]

Presume an unsettled local position without kos in a rich environment.
For each settled follower X, set Br(x) = Wt(x) = Cx = X and Mx = 0.
Iterate the following steps:

1. For each unsettled position P, calculate Bt(P) = max Wr(Ps) - T.
2. For each unsettled position P, calculate wt(P) = min Br(Pw) + T.
3. Determine min T =: Mp so that B7(P) = wt(P) =: Cp.

4.Set Br(P) = Cpif T = Mp or = Br(P) if T < Mp.

5.Set Wr(P) = Cpif T = Mp or = w1(P) if T < Mp.
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Details

Each unsettled position P includes each unsettled follower and eventually the
unsettled initial local position. For the current P, we first calculate Black's scaf-
fold Br(P) and White's scaffold wT(P), second determine the move value Mp and
count Cp, third derive Black's wall Br(P) and White's wall Wt(P).

Black's scaffold Br(P) is derived from max Wt(Ps) of all Ps. We account -T for
Black's move. Black maximises among all his options (available next moves)
Ps. For Black's follower, White is the next moving player so we iterate by call-
ing White's wall Wt().

White's scaffold wT(P) is derived from min Br(Pw) of all Pw. We account +T
for White's move. White minimises among all his options (available next
moves) Pw. For White's follower, Black is the next moving player so we iterate
by calling Black's wall Br().

Since P is unsettled, the currently moving player has at least one available op-
tion. In the example below, there is always exactly one option so we forgo the
max or min notation and step of Black maximising or White minimising, re-
spectively.

The accounting of -T for Black's move or +T for White's move is consistent
with the equations Br(P) = max Wr(Ps) - T and Wt(P) = min Br(Pw) + T in
the remarks on definitions 23 enhanced by considering the maximum or mini-
mum for several options, respectively. We can interpret this as a tax for moving
locally in a rich environment of temperature T.

How do we actually calculate Black's scaffold Bt(P) when deriving it from max
Wr(Ps) of all Pg? If Black's follower Pg is settled with the count X, we simply
subtract T so have Br(P) = x - T. If Black's maximising follower Ps is unsettled,
we consider the previously determined Wt(Ps) and modify it by subtracting T
for each of its temperature ranges and simplifying the resulting terms.

How do we actually calculate White's scaffold wrt(P) when deriving it from min
Br(Pw) of all Pw? If White's follower Pw is settled with the count X, we simply
add T so have wt(P) = x + T. If White's minimising follower Pw is unsettled,
we consider the previously determined Br(Pw) and modify it by adding T for
each of its temperature ranges and simplifying the resulting terms.

The players alternate and we have linear equations. Therefore, each term is a
number, a number plus T, a number minus T, or +T - T (or vice versa) cancel
each other so we have a number again. Terms do not become increasingly com-
plicated. It is, however, possible that several temperature ranges occur. An itera-
tion step might add another temperature range or decrease the number of cases
for different temperature ranges.
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We apply definitions 9 of count and move value to Black's and White's scaf-
folds: we determine the minimum temperature T, which is the move value Mp, so
that they are equal: Bt(P) = wt(P), which is the count Cp.

How do we actually determine these values? We consider the temperature
ranges of B1(P) and wt(P). We check their temperature ranges in increasing or-
der, starting from the lowest common temperature range. We stop on finding the
smallest temperature T for which equality Br(P) = wt(P) occurs. For each
checked temperature range, we apply its explicit terms of Br(P) and wt(P) in
the equation B1(P) = wt(P), possibly transform to simplify and dissolve T, and
verify whether the equation is fulfilled for at least one temperature of the cur-
rently checked temperature range. If it is fulfilled, the dissolved T is the mini-
mum temperature, for which equality Br(P) = wt(P) occurs. Otherwise, we pro-
ceed likewise with the next temperature range.

For large enough temperatures T = Mp, we set Black's wall Br(P) and White's
wall Wt(P) equal to the count: Br(P) = Wt(P) = Cp. For smaller temperatures
T < Mp of mandatory local play, Black's wall Br(P) is Black's scaffold Br(P),
that is Br(P) = Br(P), and White's wall Wt(P) is White's scaffold wt(P), that is
W1(P) = wt(P).

If Black's scaffold Br(P) has the same term for all temperatures, Black's wall
Bt(P) inherits this term only for the lower temperature range T < Mp. If Black's
scaffold BT1(P) comprises different terms for different temperature ranges,
Black's wall Br(P) inherits them for the lower temperature range. However, the
new second-highest temperature range receives Mp as its excluded upper bound.

If White's scaffold wt(P) has the same term for all temperatures, White's wall
Wr(P) inherits this term only for the lower temperature range T < Mp. If White's
scaffold wTt(P) comprises different terms for different temperature ranges,
White's wall Wrt(P) inherits them for the lower temperature range. However, the
new second-highest temperature range receives Mp as its excluded upper bound.

In step 3 of the algorithm, the smallest T, which characterises equality, always
exists. Due to continuity of either scaffold or wall, we may choose where to put
equalities in the inequalities of the temperature ranges.

Francisco Criado has discovered the important Example 1, whose calculation |
work out. We study it again in the following section. In the graphs, the left solid
trajectory is Black's wall, the right solid trajectory is White's wall, the thick dash
line 1s the upper part of Black's scaffold, the thin dash line is the upper part of
White's scaffold, the upper solid line with arrow is the mast.
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Example 1

P ={Ql-3}, Q = {8|R}, R = {5|]-1}, S = {7|U}, U = {1]-3}.

Iteration Step 1 for U:

Scaffolds:

pr(U) = Br({1]-3}) =1-T.

wt(U) = ot({1]-3}) =-3+T.

Equality:

Br(U) =w1(U) <=>1-T=-3+T<=>4=2T<=>2=T

is the minimum, for which Br(U) and wt(U) are equal, so the move value is
Mu =T = 2 and the countis Cu = B2(U) = 1-2 = w2(U) = -3 + 2 = -1.
Walls:

Br(U) = Br({1]|-3})

=Cy=-1 ifT>My=2,
=Br(U)=1-T if T < 2.
Wr(U) = Wr({1]-3})
=Cy=-1 ifT>My=2,

=or(U)=-3+T if T < 2.

0-1-23-4-5-6-7-8-9
Thermograph of U
8060207 00707
1T T 1T 1T 1T T 1T 1T 1T 1T 1T T

Dia. 1.1: position U, Dia. 1.2: Black's score 1 Dia. 1.3: White's score -3
My=2 Cu=-1

@--
o+
<4
o+
o 4+
~ 4
w4+
o 4
-
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Iteration Step 2 for S:
Scaffolds:
Br(S) = Br({7|U}) =7 - T.
wT(S) = wr({7|U}) = Br(U) + T = Br({1]-3}) + T
=-1+T if T 22,
=1-T+T=1 if T < 2.
Equality: For which minimum T is B1(S) = wt(S) fulfilled?
It is not fulfilled for T < 2as B1(S) = w1(S) <=>7-T=1<=>6=T.
Br(S) =wr(S) <=>7-T=-14+T<=>8=2T<=>4=T
is the minimum, for which Br(S) and wTt(S) with its T = 2 term are equal, so

the move value is Ms = T = 4 and the countis Cs = B4(S) = 7 - 4 = w4(S) =
-1+4 =23,

Walls:
Br(S) = Br({7|U})
=Cs=3 if T 2 Ms = 4,
=B1(S)=7-T if T < 4.
Wr(S) = Wt({7|U})
=Cs=3 if T 2 Ms = 4,
=wr{7|U}) =-1+T if4>T =2,
= w1({7|U}) =1 if T < 2.

123 -4-5-6-7-8-9
Thermograph of S
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Example: We have the ensemble of the two large local endgames A and B. The
marked environment has the temperature T = 2 in its shown most valuable re-
gion. In Dia. I with Black's correct start, the local count is 18 and Black gains
about T/2 = 1 from starting in the environment so the result is R =18 + 1 = 19.
In Dia. 2, the local count is 19, Black loses about T/2 = 1 as White starts in the
environment so the result is R, =19 - 1 =18.

Proposition 51 [maximum net profit of starting in a simple environment]

T is the maximum net profit of starting in an environment of simple gotes
without follow-ups and largest move value T.

Proof

Suppose the alternating sequence's counts Co, Ci,..., Cn = 0. By theorem 29 and
its proof, the net profit is -Co as the sequence transforms Co + (-Co) = 0." If the
sequence has only one move with the gain and move value T = C1 - Cp, the
transformation of counts is Co + (-Co) = C1 = 0. The aforementioned net profit

is the maximum because, for several moves, the sequence's transformation is
also (*).o0

Definitions 25 [alternating sum/

AT is the finite sign-alternating sum of the values T, Tz,... in decreasing-or-con-
stant order. AT|F is the sign-alternating sum of the values T, Ti,... and F con-
sidered together in their decreasing-or-constant order.

Remarks

An alternating sum of no values is 0. We can have AT =T - T1 +..., -AT = -T
+ T1 -..., AT1 = T1 - T2 +... or ATv = Tv - Tv-1 +... One local follow-up
move value, say, F can also become available in AT|F. For example, if the envir-
onment consists of the values 8, 6, 4, 2 and there is the local follow-up move

value 7, then AT|[F =8-7+6-4 + 2.

Presuppositions

Suppose A is set of numbers, M ¢ A, A:={acA|]a>M},A:={acA|a
<M}, U:=|Al

Proposition 52 [adding a unique value to an alternating sum]

AA = AA + (-1)YAA and

AAIM = AA + (-1)%(M - DA) = AA + (-1)°(AA|M).
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8.3 Medium Temperature with Larger Follow-up

Introduction

The 'medium' temperature T is smaller than the follow-up move value E of the
starting player and larger than the follow-up move value F of the opponent. Pro-
position 92 started with two alternating sums in the term AT|E + AT1|F, which
proposition 97 slightly simplifies to AT1 + AT1|F. We define the alternating
sum Ar of the test sequences' intermediate parts. Proposition 98 states its equal-
ity to the simplified term. Now, theorem 99 uses a condition with the one alter-
nating sum /\r to decide whether to start in the environment or locally. Proposi-
tion 100 is a preparation for theorem 109, considers the two test sequences and
relates their net profits to their gains. Compare Volume 4 chapter 12.4.2.

Proposition 97 [starting player's perspective, preparation for F < T < EJ
If F < T < E, the starting player starts
in the environment if 2Mgote - E < AT1 + AT1|F,
locally if 2Mgote - E = AT1 + AT1|F.
Proof
Comparison in proposition 92 <=> (1) ? (2) <=> 2Mcote - T ? AT|E +
AT1|F <=>) 2MgoTe - T ? E - AT + AT1|F <=>2Mgote- T? E-T + ATy

+ AT1|F <=> 2Mgorte - E ? AT1 + AT1|F Accordingly, the maximising start-
ing player starts in the environment if (1) < (2) or locally if (1) = (2).0

*) By assumption E > T.

Definitions 31 [for F < T < E]

AF is the alternating sum of twice those move values of the environment exclud-
ing T that are larger than F, and the follow-up F.

For Ar, the intermediate part of a sequence excludes T and consists of the other
moves of the environment with move values larger than F, and the follow-up F if
available.

Remarks

Ar (pronounce: lamda F) evaluates the net profits of the intermediate parts. F has
a plus or minus sign for an even or odd number, respectively, of move values of
the environment excluding T that are larger than F.

Proposition 98 [relation to alternating sum for F < T < E]
AT1 + AT1|F = Aw
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Proof
Case L even:

AT1 + ATi|F = (T1i-To 4+ - TL+ Tirr -T2z +0) + (Tr -T2+ - T +
F-Tirr+ Tev2-) =2(T1 -T2 +... - TL) + F = Ar

Case L odd:

ATi + ATh1|F=(T1-T2a+... + TL-Tisr + T2 =) + (T1 -T2+ + T -
F+Tirr -T2 +..)=2(T1-T2o+... + TL) -F = ArD

Theorem 99 [starting player's perspective and start for F < T < E]
If F < T < E, the starting player starts

in the environment if 2MgoTe - E £ Af,

locally if 2Mcote - E = Ar
Proof: Apply proposition 98 to proposition 97.0

Proposition 100 [starting player's perspective, difference for F < T < EJ

IfF < T <E,then P2 - P1 = E - 2Mcote + Ar

Proof

We have stated the sequences in the proof of proposition 92 as

1) P1 := Mgcote - AT|E

2)P2:=T - Mcote + AT1|F

P2 - P1 = (T - Mcote + AT1|F) - (Mgote - AT|E) =D (T - Mcote + AT1|F) -
(Mcote - E + AT) = (T - Mcote + AT1|F) - (Meote -E+ T -AT1) =T -
Mcote + AT1|F - Mgote + E- T + AT:1 = E - 2Mcote + AT1 + AT1|F =2 E
- 2Mgote + ArD

*1) By assumption E > T.
*2) By proposition 98.

Example 1: We have: a local gote with the gote move value Mgorte = 10.5, the
follow-up move values E = 8.5 and F = 1.5; an environment with T =8, T1 = 8§,
Tr=35T3=3,Ta=1,Ts=1,Te=05F<T<E<=>15<8<85,Ar=
2¥T1 -T2+ T3) - F=2*%8-3.5+3)-1.5=13.5. According to theorem 99,
Black starts in the environment at '"T' because 2MgoTE - E < Ar <=>2%*10.5 - 8.5
< 13.5 <=> 12.5 < 13.5. We have the counts C1 = -28 and C2 = -27, and net
profits P1 =Mgote-E+T-T1+T2-T3+T4-Ts+Te=10.5-85+8-8+3.5
-34+1-1+405=3andP2=T-Mgote +T1 -T2+ T3-F+T4-Ts+Ts=28 -
105+8-35+3-15+1-1+0.5=4.
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Example 1: Black starts Dia. 1.1: sequence 1, C; =-28, P1 =3

9000000
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2 + & + 890,
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o &
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Example 2: White starts Dia. 2.1: sequence 1
Cir=-19, P;=3

Theorem 93 confirms Black's start in
the environment because P1 < Py <=> 3
<4 and C; < Cy <=>-28 <-27. Accord-
ing to definitions 34 and theorem 109,
we have C2 - C; = P2 - P1 = AF -
(2MgotE - E) <=>-27 - (-128) =4 -3 =
13.5-(2*10.5-8.5)=1.

Example 2: We have a local gote with
the gote move value Mgote = 11, the
follow-up move values E=9 and F = 2.

et o
SRR & &S
00009 O

2999, .9, 9
SO80000999

) 0000 : 0004
@4‘@4‘4‘4‘3“

Diﬁ. 2.2: sequence 2,
C>=-19 P,=3

We have: an environment with T=8.5, T1 =7.5; A, =2*T1 - F=2%*7.5-2=13,
F<T<E <=>2<8.5<9. According to theorem 99, White starts locally at 'M'
or in the environment at 'T' because 2Mgote - E = Ap <=>2*11-9=13 <=>13
= 13. We have the white-counts Ci = C2 = -19, and net white-profits P1 = Motk
-E+T-T1=11-9+85-75=3and P=T-Mgorg + T1 -F=85-11+7.5
- 2 = 3. Theorem 93 confirms that White starts locally or in the environment
since P1 =P, <=>3 =3 and C; = C2 <=>-19 = -19. According to definitions 34
and theorem 109, we have Cz - Ci = P2 - Pi = Af - (2Mgork - E) <=>-19 - (-19)

=3-3=13-(2*11-9)=0.
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