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1. Introduction

The technique of offshore pipelaying is shown in Fig.1. Segments of steel pipe, weighted and
protected by a concrete coating, are connected on board. A tensioner retains the pipeline on the
moored vessel and supplies the required tension to the unsupported span. As the tensioner grips
the pipe with a pair of caterpillar tracks, it can provide an axial pipe motion relative to the vessel
to pay out pipe and to keep tension force oscillations within a permissible range. (Langner and
Ayers 1985). For limiting the pipe stress at the upper end of the span, the pipe is guided over
a circular stinger equipped with rollers. Its radius corresponds at least to the maximum tolerable
bending stress, and its length must ensure that the pipe lifts off smoothly well ahead of the lower
end of the stinger to avoid an excessive bending moment peak at the last roller. In extremly deep
water the pipe axis becomes so steep that the required stinger length may not be feasible for the
S-method. In this case, the J-method is recommended: All welding equipment and the tensioner
can be variably inclined to minimize the bending moment at the clamped end.
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Fig.1: Principle of offshore pipelaying (S-method)

Only a few papers on the dynamics of pipelaying have been published up to now.

Kirk and Etok (1979) studied random-wave-induced motions of pipelines in the J-configuration.
Their analysis is based on Morison’s equation and spectral analysis of linearized responses in the
first five modes of oscillation. Vessel motions and variations of axial tension are not considered.
The pipe ends are assumed clamped or hinged.

Malahy (1986) developed a general purpose dynamic beam analysis method which is also valid
for pipelaying. It is based on Hamilton’s principle applied to a finite element model with oscillating
local coordinate systems. Acceleration and velocity discretization for a time domain simulation
is based on the trapezoidal integration rule. An inner loop solves the equation system at each
timestep, and an outer loop improves the solution using Newton’s method.

Clauss and Weede (1990) published a simplified version of the present method. Nonlinearities
were simulated by offset effects in the frequency domain approach. This ‘semi-nonlinear’ method
may still be interesting as a more simple alternative. It is based on large deflection circular beam
theory (Weede 1990) which yields a differential equation for the radius vector of the oscillating
pipe’s axis (Table 1).
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Viahopoulos and Bernitsas (1990) expanded the same vector equation by adding some terms,
e.g. for bending rotatory inertia and structural damping. A vector version of Galerkin’s method
is introduced together with a finite element discretization; thus, a coupled equation system with
time dependent matrices is obtained. It is solved by means of Newmark’s method. Special effort
is devoted to accurately simulate the monolateral support of the pipe by both stinger and seabed,
including soil friction. Their rigid soil model, however, neglects soil damping.

Weede (1990) published alarge deflection dynamic analysis method for submerged slender beams
excited by arbitrary line loads and boundary motions.

Two other publications on pipelaying analysis are only considering the static case, but with
some interesting special effects. Pedersen and Yan (1986) include non-circular configurations, e.g.
bundles of several pipes. Oliver and Oriate (1985) include sheer and nonlinear elasticity, e.g. plastic
pipes. Both publications describe quite sophisticated three-dimensional numerical methods.

As a related topic, riser analysis should also be considered.

Gardner and Kotch (1976) presented the type of dynamic bending equation later used by Hapel
and Kohl (1980) and also in the present paper. They introduced the assumption that the dynamic
tension force depends on time only, but not on the curve length. The present paper applies this
assumption to pipelaying. For details see Weede (1990) and Kauderer (1958). Gardner and Kotch
discuss the case that the dynamic tension force is known. In the present paper it is deduced from
the vessel’s motions together with the bending oscillations. Their method of solving the nonlinear

problem is to gather all nonlinearities as an initially unknown load and to improve the solution
iteratively.

Hapel and Kohl (1980) took advantage of the fact that the static tension force in a marine
riser increases linearly from bottom to top. Dynamic tension and flexural rigidity are neglected.
After linearizing the hydrodynamic drag, the dynamic bending equation is solved analytically using
modified Bessel functions.

Frequency domain analysis performs quite poorly if one evaluates the linearized hydrodynamic
damping parameter in time domain. The corresponding Eq. (19) in this paper is speeded up in
practice with an approach presented by Krolikowski and Gay (1980) for irregular seaway as a
Gaussian process (Borgman 1969).

Cable dynamics differ from pipelaying due to both large axial strain and the absence of flexural
rigidity. For the planar case, Bliek and Triantafillou (1985) present a linear and a nonlinear solution
based on equilibrium methods. The nonlinear solution consists of a quasi-stationary part to satisfy
the inhomogeneous boundary conditions due to the vessel’s motion and a dynamic part which is
decomposed into mode shapes. In this paper, alternatively, the dynamic deflections are split into a
linear and a modally decomposed nonlinear part. Like Gardner and Kotch (1976) for risers, Bliek
and Triantafillou solve the nonlinear cable problem by c0n51denng all nonlinearities as an initially
unknown load to be improved iteratively.

Several practical aspects of offshore pipelaying are discussed by the following two papers.

Based on large deflection beam theory, Clauss et al. (1977) published a static analysis of pipe
geometry and stresses during laying. Further, a procedure for pipe dimensioning is presented con-
sidering the combined stress associated with external pressure and bending moment under laying
conditions, allowing for initial out-of-roundness of the pipe.

The most comprehensive variety of practical pipelaying aspects is discussed by Langner and
Ayers (1985). They cover technical and economical implications of different laying procedures and
discuss how to use the tensioner to avoid prohibitive dynamic tension forces or relative axial motions
between pipe and ship. '

Many publications deal with the analysis of free pipeline spans on the soil due to scour effects,
e.g. Bruschi et al. (1987) and Hobbs (1986). This problem is mathematically quite different from
pipelaying, but the boundary conditions at the sea floor may be useful also for pipelaying analysis.
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This paper presents a unique approach to statics and dynamics of pipelines during laying. It is
based on the theory presented by Weede (1990) and includes the nonlinear interaction between ten-
sion and bending oscillations as well as a sophisticated tensioner control. The results are composed
from a frequency domain approach and a modally decomposed improvement in time domain. The
theory is validated experimentally. The model testing technique, initially proposed by Clauss and
Kruppa (1974) and substantially improved since then, achieves model similarity by defining cha-
racteristic numbers derived from the non-dimensional differential equations of pipeline dynamics.
Comparisons of calculated and measured motions, stresses and loads of typical pipelines prove the
reliability of the proposed calculation method.

Symbols

b(s,t) damping parameter

b(s)  linearized damping parameter

Ca Morison’s added mass coefficient = 1

cd Morison’s drag coefficient

Cjj square of the 1st derivative of the j-th norma-
lized mode shape, integrated over the length

D largest diameter, diameter of concrete hull

D,. external diameter of steel pipe

d vertical distance from seabed to top of stinger
circle (S-method) or to the clamped end (J-
method)

E Young’s modulus

ErI flexural rigidity of steel pipe

EA axial rigidity of steel pipe

€z,€y, €, cartesian vector base in the static touch-down
point on the seabed: x=ahead, y=port, z=up
es(s),en(s), ep(s) modified moving trihedral of the

planar static elastic line: S=tangent, N=lateral

in the static plane, B=lateral perpendicular
to the static plane

Fy(s,t) effective tension force = real tension force +
displacing cross sectional area times external
hydrostatic pressure

Fy,:(s) static part of effective tension force

F,4y(t) dynamic part of effective or real tension force

F,; j-th complex Fourier coefficient of the linea-
rized dynamic tension force Fy(t)

Fo(t) linear part of dynamic tension force Foay(t)

Fi(t) nonlinear part of dynamic tension force Fj 4, (t)

g gravity acceleration = 9.81m/s?

H static horizontal effective internal force

k on the soil: beam subgrade modulus; in the
free span: zero

L unsupported length

Mz (s,t) torque
Mr;(s) j-th complex Fourier coefficient of torque

m mass per length of pipe plus added mass from
water or soil, respectively
mo mass per length of the pipe only

pn(s,t) hydrodynamic lateral line load component from &;

waves and current in the static plane
pB(s,t) like px, but perpendicular to the static plane
pn;(s) j-th complex Fourier coefficient of the hydro-
: dynamic line load component py

pB;j(s) like pivj, but perpendicular to the static plane
R stinger radius
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Tg;(t) like Tn;, but perpendicular to the static plane

uj(s) j-th normalized mode shape

un(s,t) dynamic bending deflections in the static plane

up(s,t) dynamic bending deflections perpendicular to
the static plane

un;(s) j-th complex Fourier coefficient of the linea-
rized bending deflections in the static plane

up;(s) like uyj, but perpendicular to the static plane

u9(5) contribution to up; from lateral loads and
Nj L)
boundary conditions;

uﬁ} (s) the contribution to uy; from dynamic tension

: (1)
force is F; Uy

us(s,t) axial dynamic deflection

usz(t) boundary value of ug at upper end of unsup-
ported span

Awu,(t) axial pipe motion relative to the vessel

uon(s,t) linear part of the dynamic bending deflec-
tions in the static plane

ugp(s,t) linear part of the dynamic bending deflec-
tions perpendicular to the static plane

u1N(s,t) nonlinear part of the dynamic bending de-
flections in the static plane

u1B(s,t) nonlinear part of the dynamic bending de-
flections perpendicular to the static plane

v static bottom support force

vn(s,t) external flow velocity lateral to the pipe in
the static plane

vp(s,t) external flow velocity lateral to the pipe per-
pendicular to the static plane

w submerged weight per length (weight in air
minus buoyancy)
z,(s) horiz. component of planar static elastic line
zs¢(s) vertical component of planar static elastic line
B parameter of the Newmark method; e.g.: 0.25
Bix(t) damping parameter times i-th times k-th nor-
_ malized mode shape, integrated over the length
Bix linear part of B;;

ApB;;(t) nonlinear part of B;;

J-th modal coefficient of ¢'(s)

mass distribution m times square of j-th nor-

malized mode shape, integrated over the lenght

0 specific mass of sea water = 1025 kg/m3

7n;j(t) j-th modal coefficient of the nonlinear part of
the bending deflection in the static plane

7B;j(t) like 7y, but perpendicular to the static plane

Hjj
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1(s,t) radius vector of pipe axis from static touch- (s) static inclination angle

down point |¢'(s)| static curvature

s curve length from static touch-down point, j-.th natural circular frequency
upwards positive w circular frequency

t ume . . O  9/os

Tnj(t) j-th modal coefficient of the linearized dyn. 0 8/t

bending deflection in the static plane

Oc

boundary value at top of free span

2. Basic Equations

The configuration of the pipeline as a Bernoulli beam is defined by the radius vector r(s,t) of the
pipe axis and the torsional angle x(s,t) as functions of curve length s and time t. Partial derivatives
will be designated by () = 8/9s and (") = 9/0t.

The pipe has the mass per length mo and the torsional mass moment of inertia per length ©.
We regard a pipe element, length ds, loaded by an external line load q and internal forces F and
moments M at both ends.

As the hydrostatic pressure is only acting on the wetted surface, the resulting force is normal to
the pipe axis. It is easier, however, to substitute this force by
— a vertical buoyancy force which results from the pressure effect on the wetted surface and the
non-wetted cross sections, and — for appropriate correction -
— axial tension forces which result from the negative external hydrostatic pressure acting on the
non-wetted cross sections.

The vertical buoyancy contributes to the external line load vector g, and the correcting axial tension
forces are added to the internal force vector, i.e. the resultant effective” internal force F consists
not only of the stress relevant forces, but also of these axial hydrostatic force corrections.

The basic equations are derived from the dynamic force equilibrium, from the dynamic moment
equilibrium neglecting bending rotatory inertia according to Bernoulli beam theory and from the
constitutive equations of bending and torsion of circular pipes. Table 1 shows the derivation of the
basic equations similar to a flow chart.

constitutive dyn.'l}mor-nent dyl.l'. fo.r e constitutive eq. of
eq. of torsion dl\eliqml;bnu;\n ;thbl;um bending

_ ' M+arxt = F+qds= _ 5y M
Mr =Gl x =B sy — v A5 § Mg =FEIr' xr

l

s = curve length, ()’ = 9/9s

) . - - t = time, () =9/t
' M+r'xE)=[|'x(M+'xF)= _F' w_ (s, t) = radius vector
) e , = ] £ +mer=gq : .
=r -Oxr =1 x Oxr = r'= tangent unity vector
| k = |["| = curvature
; g P p _ x(s,t) = torsional angle
L MMT (z ;'_)I_I@:'M XM+ Fr-F= q = line load vector
=Mp—1 -NM=0UX L F = effective internal force vector
- —(r' x MI), — (Fsr') +mot = q Fy = F .1'= eff.tension force
circ.pipe = T M= Mz1r' + Mg
" LM —(r' x M3 ) — (Mrr xt")y - = internal moment vector
T —(Ft') + mef =g Mr=torque
Mp = 0Oy M p=bending moment vector
[ 'xMp=(@1'xMg) —1"xMp=
—_ [I, X (I, X EII”)],—
torsional differential eq. -1" x (' x EIt") =

(GLx') —0% =0

— —(EII”), _ EIKZI_,

difierential eq. of the radius vector

(EIT")" + (BI&Y) - (MY x 1) — (For') + moi=¢

(1)

Table 1: Large deflection beam theory for circular pipes
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The configuration r(s,t) of the pipeline is split into a planar static configuration r,,(s) and a
dynamic deflection u(s,t). The planar static load only consists of the submerged weight per unit
length (reduced by buoyancy): q_,=—we,. The planar static configuration r,,(s) can be defined by
its inclination angle ¢(s) versus the horizontal direction.

With the moving trihedral - see Fig.1 -

3 ’ %
es = cospe, +sinpe, =Ty ey = —sinpe, +cospe, =Iu/¢  ep =g,

the planar static configuration is calculated by integrating Eq. (1) and substituting rj; = eg and
I, = ¢'ep. With constant ET this results in the vector equation

EI (PNQN — lsst€g = _ng - (WS—V)_QZ

The integration constants are the effective horizontal force H and the bottom support force V. The
lateral and axial component equations define the static problem:

EI"(s)— Hsing(s) + (ws—V)cosp(s) =0 (2)

r,(s) = /cos w(s)dse, + /sin w(s)dse,
Fist(s) = H cos ¢(s) + (ws—V)sin¢(s) (3)

The nonlinear differential equation (2) is solved to obtain the static curvature |¢'(s)| and effective
tension force F,,:(s) for stress calculation and the static configuration r,,(s). Fsst(s) and ¢/(s) also
have a significant influence on the dynamic response.

The dynamic configuration is also calculated from Eq. (1) after splitting off the static terms. As
specified by Weede (1990), uncoupling is achieved by approximating the derivatives u’ and u” of
the dynamic deflection vector. The dynamic lateral deflections in the static bending plane (N) and
perpendicular to it (B) are calculated from the component equations

EIuy — (Foul) +moiin = ¢'Foay +qnay (4)
EIug - (Fup) +moiis = (¢'Mr) +4Bay (5)

On the left-hand side, the dynamic tension force Fyq, contributes to the effective tension force
F, = F,st+ Fyq4y introducing a time-dependent stiffness. On the right-hand side, it yields a pseudo
line load in combination with the static curvature. As Fy4, = EAegy it depends on the dynamic
strain

' ' u% "’g
edyzus_ﬂouN"i‘_z—“}‘_z" (6)

which is a function of axial motions ug and lateral motions un,up (Weede 1990). The two squared
terms reflect that the dynamic shape requires more curve length than the static configuration; this
phenomenon stiffens the pipeline by increasing the mean dynamic tension. The additional term
@'up illustrates the fact that axial and lateral deflections are coupled at large static curvature ¥

Axial elastic vibrations are neglected, as the first axial natural frequency is too high to be
excited by the seaway. Consequently, the dynamic tension force has nearly the same amplitude and

phase all along the pipe (Kirchhoff’s hypothesis, Kauderer 1958) and may be averaged over the
unsupported span:

1  FEA
Fsdy ~ —E/F,dyds = T Gdyds (7)
(L) (L) '
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The hydrodynamic load components in the unsupported span, gnq4y and gpay, are deduced from
the generalized Morison equation (see Clauss et al. 1988). In the planar case, where the pipe moves
with the lateral deflection u, and the external flow velocity from waves and current has the lateral
component v, it yields:

D? : TD?, . Ny
Qdy — Mol = (1+ca)g£:1—v + cd-g-D]u—vl V- (m0+cag——4—-) i — cd-ngu—v] % (8)
b(s, t) m b(s,)
p(s,1)

where m is the effective mass per unit length, b(s,t) is the damping parameter and p(s, t) is the load
contribution from waves and current. The added mass coefficient of a circular cylinder is ¢, = 1,
and for the drag coefficient we propose ¢4 = 1.2.

Beyond the touch-down point, the pipe on the sea floor is treated as a generalized Winkler beam
with linear elasticity, damping and inertia forces. At some distance from the touch-down point a
clamped end is assumed.

A three-dimensional generalization of Eq. (8) is introduced into Egs. (4) and (5) for the free span.
For the span laying on the ground, the soil mechanical equivalent is taken. Eq. (6) is introduced into
Eq. (7). Thus, the dynamic problem consists of two differential equations of bending oscillations
in the static plane (N) and perpendicular to it (B) and of the averaged axial constitutive equation
specifying the dynamic tension force:

EIu}/ — (Fsuy) + kun + miiy + biny = ¢’ Foqy + pN ©)

EIvg — (Fsupg) + kup + miig + bip = (¢'Mr) + p5 (10)
_EA N -

Feay = ¢ u’L_/((PUN_ 2 "2 )% )

(L)

In the unsupported span the parameters are:

D2

k=0 m = mg + cagz4— b= cd-gD\/('llN—VN)2 + (‘I:LB~--VB)2 (12)
7D? . . D?,
pN = (1+ca)o——Vn +bvn PB = (1+Ca)97r—4——VB +bvp

On the seabed, the influence of the loads pyy and pp = 0 may be neglected and k (beam subgrade

modulus), m (pipe mass plus soil added mass per unit lenght) and b (soil damping) are determined
from linearized soil mechanics.

The axial pipe deflection relative to the vessel (inside the welding station) follows from the axial
motion of the pipe head u,r(t)=us(s=L,t) and the associated vessel motion component wu,(t):

Aug(t) = usr(t) — uy(t) (13)

If the tensioner is blocked, this relative axial deflection is zero, the dynamic tension force Fyq,(t)
is unknown and Eq. (11) is coupled with Egs. (9) and (10). If the resulting dynamic tension force
threatens to leave a permissible range, the tensioner drive will start to compensate as long as
necessary, keeping Fyg, on the upper or lower limit. During compensation, Egs. (9) and (10) are
solved with the known Fy4, and Eq. (11) is resolved with respect to the axial pipe head motion
u,L(t) to obtain the relative axial motion Awu,(t) from Eq. (13). Thus, a very large permissible
range results in a permanently blocked tensioner, and a zero sized permissible range results in
a permanently compensating tensioner. Only these two cases can be considered in the frequency
domain approach.
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3. Planar Static Solution

 Asspecified in the basic equations, the pipeline configuration r(s, t) is composed of a planar static
elastic line r,;(s) and a dynamic deflection u(s, t). The static inclination angle ¢(s) and the resulting
‘pipeline configuration are calculated by solving Eq. (2). Static bending stresses op = +E¢’' D, /2
depend on ¢’ (curvature x;; = |¢’|) which also is an important term for the dynamic analysis.
The static effective tension force Fy,; follows from Eq. (3). Note that for stress calculations the
effective tension force has to be reduced by the hydrostatic pressure contribution gg(do—z,t)"‘i-gz—
as the cross sections of the pipe element are non wetted. (do—zs¢) is the element depth below the
water surface. For solving Egs. (2) and (3) a numerical solution was selected. Further, for speeding
up the calculations, the following analytical approach was developed (Weede 1990), based on an
approximate solution ¢(s) of Eq. (2).

Inclination angle ¢(s):

(e2/B)

_ 2 /
¢(s) = arctan (wsH V) + Elv” |(Hep, _

Curvature |¢'(s)|:

Hel(s) _ 1 Hey 1
G S0y N Ay

Pipe geometry z(s), z5¢(s):

z5(s) = /cos o(s)ds z51(s) = [sin p(s)ds
0

Effective tension force Fys(s):

| (ws=V\?
Fyt(s) = Hcosp(s) + (ws=V)sinp(s) ~ H 1-}-( HV)

Bottom support force V:

vV 3 \/EIW"’ 1 \/EIW2 3 \/EIW2 1 [EIw?
¥ \Vaw Tt - Vi T\
The equations are evaluated using known values for:
w submerged weight per unit length
EI flexural rigidity
d depth from seabed to the horizontal tensioner axis (see Fig.1) in case of S-method or to the
clamped end in case of J-method
H horizontal force
@7, boundary curvature at upper end of the unsupported span.
J-method: ¢} = 0; S-method: ¢} = —1/R, where R = stinger radius.

The exact bottom support force (the above expression is an approximation only) is determined

iteratively from the condition ¢(0) = 0. The unsupported length L is obtained via a binary search
from the boundary condition

(s=L) = d—R(1-cosep(s=L)) in case of S-method
A B in case of J-method
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4. Linearized Dynamic Solution

The dynamic deflections and tension force are calculated from Egs. (9)-(11). Linearization con-

sists of four assumptions:

— The total effective tension force Fi(s,t) on the left side of Egs. (9) and (10) is approximated by
its static value Fyu(s);

— the square strain terms in Eq. (11) are neglected;

~ for the hydrodynamic damping parameter b(s,t) a time independent approximation b(s) is taken
and improved iteratively to minimize the square error of the drag force.

— The tensioner is either permanently blocked (F,4, unknown, Au,=0) or permanently compen-
sating (F,4y, =0, Au, unknown).

Using these assumptions, Egs. (9), (10) and (11) as well as the dynamic boundary conditions,
i.e. the vessel motions, are converted to frequency domain by taking their Fourier transform using
the general definitions

f(t) = i fi it ; fi= -;—,/f(t)e‘i“’it dt .

= (T)

where f; are the complex Fourier coefficients and w; = 27j/T are the circular frequencies with T
being a sufficiently large time window.

The Fourier transform of Eq. (9) cannot be solved directly if the tensioner is blocked, as on its
right-hand side the complex Fourier coefficients Fy; of the dynamic tension force are unknown in
this case. Therefore, the complex Fourier coefficients of the linearized bending deflections in the
N-direction are split into contributions i) from lateral loads and boundary conditions, and ii) from
dynamic tension force:

uN; = ugg) + Fs,u(l) (14)

Introducing this into the Fourier transform of Eq. (9) produces two equations which now can
be solved as their right-hand sides are known, i.e. the complex Fourier coefficients of the wave and
current loads py; in the equation for u§33 and the static curvature ¢’ in the equation for uﬁz
The solution has to comply with the boundary conditions, as imposed by the vessel motions in the

seaway. If this is considered in ug,g, the boundary values of ugg must be zero.

Eq. (14) is substituted into the Fourier transform of Eq. (11) neglecting the squared terms:

stz—— UsLj— /gp uNJ+Fs]u(1))d
(L)

and this is resolved with respect to the complex Fourier coefficients F;; of the dynamic tension
force.

The linear dynamic differential equations of the pipe bending deflections, used for the numerical

solution, are summarized as follows:

(0) 11 (0) ry 2 .7y (0) _ inhomogeneous boundar
EIuNj ~ (Fostuy J )+ (k_wj m+; b)u%, ?7 = PNj conditifns: vessel motio;’ (15)

B~ () + mifmtioffy = Domemeowiemien g

EIu”" (Fosttlp j)l + (k- w? m+ iwjg) ugj = (¢' MTj), +pB; inhomogeneous boundary (17)

conditions: vessel motion

Schiffstechnik Bd. 38 — 1991 / Ship Technology Research Vol. 38 — 1991 83




UsLj — /Lp'uggg- ds

Fij = 14— (18)
—.Ii_+ /(P’u(l), ds ‘
EA Nj
(L)

un; = uggg + Fyu

(1)
Nj
Eqgs. (16) and (18) have to be evaluated only if the tensioner is blocked. In the opposite case, if the
tensioner is compensating, the F; are zero and Eq. (18) is resolved with respect to the complex
Fourier coefficients u,r; of the axial pipe head motion in order to obtain the pipe axial motion

relative to the vessel from Eq. (13). The ug’; are not required in case of compensating tensioner.

The numerical solution is embedded in two nested loopé. The internal loop steps along the
circular frequencies w;, whereas the external one serves to improve the linearized damping parameter
iteratively:

/ [(‘&N—’UN)z + (iLB—vB)2]3/2 dt

b(s) = ca2D @) (19)
[ [(=ony? + (in—vs)?] @t
(T)
Eqgs. (15), (16) and (17) are linear inhomogeneous ordinary differential equations with variable com-
plex coefficients. For solving this kind of equations, an algorithm was implemented which accepts a

wide variety of inhomogeneous boundary and intermediate conditions (Weede 1990). It is based on
the Galerkin finite element method and uses deflection and inclination at the nodes as unknowns.

5. Nonlinear Dynamic Correction

Model tests have shown that the dynamic response to a harmonic excitation contains compo-
nents at integer multiples and integer fractures of the excitation frequency. In comparison to the
component at the excitation frequency itself, their amplitudes may not be neglected at higher fre-

quencies (see Fig. 5). For this reason a nonlinear correction is added to the linearized dynamic
bending deflections and tension force.

The following nonlinearities are analyzed:

— The total effective tension force Fi(s,t) on the left hand side of Egs. (9) and (10) provides a
time-dependent stiffness.

~ According to Egs. (9)«(11), the dynamic bending deflections and tension force mutually depend
on each other if the tensioner is blocked, and the square terms in Eq. (11) make this dependency
nonlinear.

—~ The hydrodynamic drag load yields a nonlinear behaviour.

At the lift-off point on the stinger, the total bending deflections must be equal to the given
vessel motions. As the linearized solution already satisfies this condition, the nonlinear correction
must be zero there. This allows to compose the nonlinear correction of individual mode shapes.

The bending deflections and the parameters are split into linear and nonlinear parts:

total = linear + nonlinear )
un(s,t)=uon(s,t)+uin(s,t)=dyn.bending deflections (N) |
up(s,t)=uoB(s,t)+u15(s,t)=dyn.bending deflections (B)

Foy(t)= Fo(t) + Fi(t) =dyn.tension force

b(s,t) = b(s) + Ab(s,t) =damping parameter

Au,y(t) = Augo(t) + Aug (t) =axial pipe deflection relative to the vessel
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Egs. (9) and (10) are decomposed accordingly. Their nonlinear part is split off as follows:

ETuiy — (Fosttin) — Faay (uon + Ui N )+ kuin +miiyn +binny + Abioy = ¢'Fy (20)
ui’g—(F,,tu;B)l-—F,dy(ugB+u;_’B)+k?l:1B+mﬁ13+bﬁ13+Ab’&oB =0 (21)

Note that Fy(s,t) = Fy(s) + Feay(2).

The linear and the nonlinear part of the dynamic bending deflections are decomposed into mode
shapes:

uon(s,t) = Y u;(s)Tw;(t) uoB(s,t) = D ui(s)Tr;(t) (22)
(9) (9)

uin(s,t) = Y ui(s)7w;(t) u1B(s,t) = D uj(s)7m;(2) (23)
(9) (9

where the 7;(t), 75;(t) are unknown and the Tn;(t), T;(t) follow from the linear solution:

T;(t) = / u;(s) von(s, 2) dt Tt = / w;(5) uon(s, 1) dt
(L) (L)

The mode shapes u;(s) and the associated natural frequencies Q; follow from

lifj=k

EIu}" — (Fostu;)' + kuj — Q3mu;j =0  where /Uj U ds = = { 0 else

(L)

(24)

Introducing the modal decompositions (22) and (23) into Eqgs. (20) and (21) yields

Z [(m"f'Nj +bNj)u;+ (EI‘LL;-'” - (F,,tu;-)'-{- kUj) TN — Fsdyu;-,TNj] = Z [Fsdyu;-'TNj - Abu_,'TNj] +o'F
) ()
(25)
Z [(m?’BJ’ +b7B; Yuj+ (EI'U.;-"'—- (Fsstu;-)'-{-kuj') 78; — Faay u_’,-’TBJ'] = Z [Fsdyu_lj/TBj - AbuJ'TBj] (26)
(9) € .
Eq. (24) allows to substitute EJ u}"~(Fystu;)'+ku; by Q2mu;. Egs. (25) and (26) are now
multiplied by u;(s) and integrated over the pipe length. This is abbreviated as follows:

Z[ﬂiﬁm + Bijing + (Vs + Fadycij)TNj] = Z[“FsdycijTNj — AﬂijTNj] + Fik;
(9 )]

Z[Mfﬁsj + BijTB; + (Qipi; + Fsdycij)TBj] = Z[—FsdycijTBj ~ AﬂijTBj]

(9 ()

Thus, two partial differential equations for uin(s,t),u15(s,t) have been transformed into two
systems of ordinary differential equations for 7xv;(t), 75;(t). Their coefficients are specified as follows:

y,-j::/u;mu,-ds ey = —/u,-ué-’ds:/uﬁu;ds n,-:/u,-go'ds 27
(L) (L) (L) (L) '

By = / uibu;ds ABi; = /u,-AbuJ-ds Bis= /u,-bu,-ds= But+OB; (28
() ' (L) 47

As the mode shapes are orthogonal with respect to to the mass distribution, the inertia terms are
uncoupled: p;; =0 if ¢ # j. Approximately, the first derivatives of the mode shapes are orthogonal
to each other, i.e. ¢;; < ¢;; if i # j. It is common practice in modal analysis to assume that the
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mode shapes are approximately orthogonal with respect to the damping distribution b(s,), i.e. to
assume that |B;;] < |Bi] if ¢ # 7. In case of offshore pipelaying, however, the damping parameter
is strongly variable along the pipe, and this assumption becomes rather unexact. It is better to
uncouple only the relatively small nonlinear part, i.e. |Af;;| < |ABii| if ¢ # j. From the linear part
ﬁ.-,-, the members i # j are neglected only initially and taken into account by means of an iterative
improvement.

With these uncouplings, the two ordinary differential equation systems are

piin + Bisini + (i + Fagyeit)tvi =  —FagyeiTni — ABiTni + Fisi — Y, Bijing (29)
. (5#1)
piipi + Butpi + (Wi + Foayei)tpi = —FaayeaTsi — ABiTsi— Y, Bijts; ~(30)
(5#19)

Eqgs. (29) and (30) are solved by the Newmark method, as described by Burnett (1987). It is a
method to solve differential equations of motion with an algorithm which steps along time ¢ with
a constant timestep At. At each timestep the unknown velocities f(t) and accelerations f(t) are
expressed by the unknown deflections f(t) and by the known results f(t—At), f(t —At), f(t At)
from the previous timestep. f(t) represents either a function of one or more coordinates or a
vector (one-column matrix) holding the discrete motions of a finite-element system. To substitute
unknown velocities and accelerations, the Newmark method uses a modified Taylor expansion of
the deflections and velocities:

£(8) %f(t- A1) + Atf(t- A1) + BF ((1-28)f(t- At)+2ﬂf(t))}
f) ~f(t-at) + At ((1-)ft- At)+7f(t))

ft)~ (F(1)~f(t~ At));;l— ~f(t= At)(% 1) -f(t-At)(gg-1)At
f)~ (FO-ft-A0) grz —ft-Agrg  ~ft-20(55-1)

For the coefficients 8 and v we recommend f = 0.25,7 = 0.5; for details see Burnett (1987). The
Newmark method may be abbreviated as

fa(f-f)aw—- ffan — fre; fr(f=f a0 - fran - frazx (31)

where magnitudes related to the previous timestep are marked with an ()*, e.g. f= f(t), f* = f(t— At),
and the following abbreviations are defined:

alo=:-ﬂy-/At a11=%——-1 aig = (ﬁ-—l)A (32)
Qo0 = %/Atz Q21 = %/At Qoo = éﬁ -1 (33)

Applying Eq. (31) to Egs. (29) and (30), they can be resolved with respect to the deflections at
the current timestep:

(ki—cii) Foay + pii(@20Th; +@a1 7R @20 78;) + Bii(@romh +Hennti; +e127Ry)

™Ni =
Cu sdy + (Q?+a20),uii+a10,3ii *
—ABiTn; — Foki — (Z Biitn;
+ i#0) 34
ciiFsdy + (Q?+a20)p’u+a10ﬂu ( )
N —CiiFaay + pii(0omg;+ a1 75,4+ 0227g;) + Bii(co7g; +onh; +0a27g;) n
;=

CiiFsdy + (2 + a20) pii + a10Bii
-AB;iTg; — § Bi;7B;
+ Cial 35
C" sdy (Qz+a20)l‘n+010ﬂu ( )
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The sum expressions are initially omitted and improved iteratively. The Ap;; require the deter-
mination of the velocity-dependent damping parameter, see Eq. (12). For this purpose the velocity
is linearly extrapolated from the previous timestep.

The above expressions for 7vi, 7B; are functions of the dynamic tension force Fy4y. A tensioner
control which keeps Fyy, within a permissible range is simulated by the following calculation of Fqy
at each timestep: An espression for the pipe axial deflection relative to the vessel can be deduced
from Egs. (11) and (13). Splitting off its linear part known from the linear solution and itroducing
the modal decompositions into the nonlinear remainder yields

L Ciz Cis
Au, = Augo + 57 (Foay— Fb) +Z['°5TNJ'— 5 (Tnj+7;)" = —%l(TB,-+rB,~)"’] (36)
(9)
where either Auy,0=0 or Fy0=0 depending on the tensioner control mode assumed for the previous
linear solution.

A binary search for the zero-crossing of this function aims to find the Fyz, which causes the

tensioner to stop (Au,=0). As the predefined permissible range is taken as initial search interval,
F,4, converges towards

— the Fyg, which yields Au,=0 if acceptable;
— the lower limit if the required Fy4, would be too small;
— the upper limit if the required Fyq, would be too large.

Thus, both tensioner control modes may alternate in the most general case.

The algorithm of the nonlinear correction follows the subsequent procedure:

Solve linear problem: uon,uoB, Fo, b, Augo

mode shapes u; and nat.circ. frequencies §2; from Eq. (24).
a;; from Egs. (32),(33); i, cii, 5i and all §;; from Egs. (27) and (28)

initial conditions: T}, =TN; =TN;=Tg;=7TB; =78; = 0

loop over the time: t = 0, At,2At,3At¢,...
Initially (t < t;) multiply linear results by 3(t/t;)* — 2(/t1)*

T N;,TB;,TN;,TB,- from modal decomposition of the linear results

AB;; from Eq. (28) with linearly extrapolated velocities

set search interval F.;,, Finaz to the given permissible range
Fygy = (Frnaz + Finin)/2

set the sum terms in Eqgs. (34),(35) to zero

TNi, 7Bi from Eqgs. (34), (35).

until the sum terms in Egs. (34),(35) are good

relative axial deflection Aug from Eq. (36).

yes : Aus>07? no

Frez = sdy Fain = sdy

until precision of dynamic tension force Fyqy is reached

evaluate Eq. (23), superimpose that to linear deflections

velocities 7wy, 78; and accelerations 7u;, 7; like Eq. (31)

. 5% AR & Sa 5%
COPY TNiyTNi»TNi, TBi»TBi»TBi 10 TNiH TN TNi»TBi» TBi» TB;
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6. Model Tests and Validation
6.1 Theoretical Background

The model testing technique is based on a non-dimensional formulation of the basic equations.
In order to achieve model similarity, lengths are normalized by H/w, forces are normalized by H,
and times are normalized by v/mH /w. Other physical dimensions are composed of these three basic
dimensions and are normalized accordingly.

The static behaviour of the pipeline is completely defined by Eq. (2) and its boundary conditions.
This is transformed into the following non-dimensional equations:

52
(EI)*as::o2 V*)cosp =0
d*— R*(1—cosp(s*=L*)) if S method
*f o F__ TR\ _
7= )"{ d* if J-method

” —1/R* if S-method
as*(s =L )“{ 0 if J-method

z*(s*=0) = 2*(s*=0) = p(s*=0) = %(s*:O) =0

where the non-dimensional magnitudes are

non-dimensional curve length: s —Hs-
non-dimensional independent parameters: (EI)*= Eé\gz g @¥= %d, Ri= -V—VHR-
the non-dimensional dependent parameters: V*= %— g L* = WTIL_
non-dimensional elastic line: = !VIf—, = %f—

As the static behaviour of the pipeline depends only on %, ﬂHd and WR , for static model

tests only these three non-dimensional parameters must have the same values in the model and
in full-scale. The pipeline cross section must not be similar because the elastic state is completely
defined by the shape of the pipe axis and by the effective tension force. If it is not similar, however,
stresses may not be transformed directly to full-scale; instead the curvature and tension force are
used for calculating the bending and normal stresses, respectively.

The dynamic behaviour of the pipeline is defined by Eqs. (9)-(11) and their boundary conditions.
For simplicity, normalization is explained for the planar case, the direct hydrodynamic load py is
neglected in comparison to the inhomogeneous boundary conditions due to the vessel’s motion, the
span laying on the soil is not considered, and the vessel’s motion is assumed to be harmonic and
unidirectional. Eqgs. (9) and (11), simplified and transformed into a non-dimensional form, yield:

Our 0 ou*\ = 0%u* du*| du* _ Oy
(B 5ot ~ 55 (F: %) e T o | B T o o
_(BA | « _/ <09 (_3_1{)2 ..
Foay = =32 | o " 2\osr) ||
(L*)
boundary conditions: w*(s*=L*,t*) = i} sin(w*t*); wyr (%) = 43y, sm( *t*)
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where the non-dimensional magnitudes, as far as they weren’t explained yet together with the
static problem, are

non-dimensional time: = WL
mH
non-dimensional bending deflections: 1i* = W_}f{M

non-dimensional independent parameters: w*= ‘—"—@, = W—'L}IML, i = XVTI-’L

(EAy=E4, i=c.§ DL

As long as the pipeline behaves linearly, the amplitudes of the vessel’s motions are not relevant,
since the dynamic response is proportional to the motion amplitude. If there are nonhnea,ntles,
however, the non-dimensional amplitudes of the lateral and axial excitation, WINL angd M.:L
should have the same values in model and full-scale. Restricting investigations to umdxrectlonal
motion of the lift-off point, the non-dimensional boundary pipe motion can be expressed by a
single non-dimensional amplitude and the angle versus lateral direction.

To achieve model similarity of the drag force, the non-dimensional damping parameter cngwiI,ﬁ
has to be maintained. This will be explained later in detail.

EA can be imagined as the tension force which would elongate a pipe span to the double of its
original length. It is extremely high as compared to any existing force, e.g. H. Thus, the model
pipeline has to comply with the merely qualitative similarity law EA > 1. Steel and similarly stiff
metals satisfy this condition; a weighted rubber band, however, would not resemble a steel pipeline.

The above non-dimensional equations refer only to the free span. If the span laying on the ground
is included, some additional non-dimensional numbers arise, describing the mechanical properties
of the soil. As they are widely varying and have only moderate influence on the behaviour of the
unsupported span, exact soil similarity has not been aimed at. It is sufficient to support the model
pipeline by an elastic soil model long enough for damping to avoid reflections at the end.

It was decided to express model similarity by the three most important parameters:
— non-dimensional depth ¥ 77—

E[w'z

— non-dimensional frequency w_JCv{,n H

Of course, any combination of these parameters yields modified characteristic numbers Thus,
as an alternative, the similarity can also be expressed in terms of Wd E I and w\/ (for details
see Clauss and Kruppa 1974).

As manufacturing hundreds of model pipelines is time-consuming and expensive, the aim was to
simulate a wide variety of full-scale problems with one single model pipeline. Thus, the parameters
were split into two categories: i) parameters particular to the model pipeline, which cannot be
varied and ii) parameters particular to each individual model test which are varied to establish

model similarity. )

The following quantities of the model pipeline had to be be selected once for ever (model quan-
tities marked by *):

(EI )*=flexural rigidity

w* =submerged weight per length

m* =effective mass per length (incl. hydrodynamic mass)
D* =external diameter
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Three parameters are easily adapted to full-scale similarity:

H*=static horizontal force
d* =vertical depth from the bottom to the upper end of the unsupported span
w* =circular frequency of excitation

To simulate a specific full-scale problem with the available model pipeline, the three similarity
laws are considered an equation system, where H*,d* and w* are the unknowns:

/3
‘ , EIw?  (EI)*w*? .o ((ED w2\
Horizontal force: R = H'=H TTw? (37)
o owd _ wid” . (El')"w)ll3 '
Depth: =L o ar=d ( L (38)
o fanf . w«/mH_w‘ m*H* . . (m)1/2 ( EI )1/6 (£)2/3(39)
circular frequency: m_— - W= |~ D

From these equations, the scales of the three basic dimensions, i.e. length, force and time, can be
expressed by magnitudes known from the full-scale problem and the available model cross section,
i.e. eliminating the initially unknown parameters H*, d* and w*:

d EIw* \/?

length scale = A[ = 5 = (W) (40)
H Ewr \'°

force scale = /\_f = F = (W) (41)

_ T o (m\Y? [ EI \Y6 (w\?* [m 2\
amesale 3=z 5= ()" (@) (%) - (%% (42

This ensures model similarity of all relevant effects except drag forces, the similarity of which is
checked now. As mentioned previously, the related characteristic number still to be discussed is

e H _ Lo H
cd2Dwm =€y - w*m”*
Introducing H ——H..:;, i,, = )\; and 2% from Eq.(42) and assuming that g ~ p*, this yields the
wd = W d m 5

model similarity law of the hydrodynamic drag:

D _cgorH wm _cg wd/H Ei_':m)\,zﬁ_fg)\?/\f (43)
D* cgo Hw'm* cqgwd*/H* d m*As M} ¢y N}

As D is not contained in any other parameter, the ratio D/D*, which is not the length scale, may
be selected independently to satisfy the drag similarity law Eq. (43). It would be mathematically
correct, but practically not feasible, to treat the external diameter D* of the model cross section as
a fourth variable parameter to be adjusted previously to each individual model test (like H*, d* and
w*). Instead, the model cross section was designed with a diameter to satisfy the drag similarity
law, Eq. (43), as precise as possible for all the range of full-scale problems to be simulated.

The drag coefficient is a function of the Reynolds number Re and the Keulegan-Carpenter
number KC. In our case the full-scale Reynolds number is about 100 times that of the model,
whereas the KC-numbers are comparable. For details see Clauss et al. (1988).
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6.2 The Model Pipeline

The model pipeline (Fig. 2), designed for bending in one plain, consists of a rectangular stainless
steel strip (20 mm x 2 mm) surrounded by elements of perspex pipe (30mm external diameter, wall
thickness 3 mm). The core of the model pipeline, i.e. the massive rectangular steel strip, determines
the flexural rigidity and ensures that the axial rigidity is extremely high as desired. In order to
avoid any influence on the flexural rigidity, the perspex pipe is divided into segments of 20 cm
length, each of them attached to the flat steel profile with screws at both ends, providing sufficient
space for bending between the segments. For stress measurements, the steel profile is equipped with
strain gauges in distances of about 60 cm. The submerged weight per unit length results mainly
from the steel strip, with a small addition from the submerged perspex pipe. Both the steel strip
and the perspex pipe contribute to the effective mass per unit length which also includes the water
trapped inside the pipe and the ‘outer’ hydrodynamic added mass.

Model pipeline specifications:
submerged weight per unit length w*  =3.5646 N/m

effective mass per unit length m*  =1.7771 kg/m
flexural rigidity (EI)* =2.7467 Nm?
axial rigidity (EA)"=8.24-105N

external diameter D* =0.03m

b
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Fig.2: Model Testing Technique
6.3 The Test Facility

The experiments were carried out in the deep water tank of our institute having 12 m)length,
1.3 m width and about 5 m depth. The planar motion mechanism and the bottom supports of the
pipeline beyond the touch-down point were attached to a large steel frame which is movable around
a bearing at the tank top (Fig. 2). Thus, the lower end of the pipeline can be lifted easily so thai; all
equipment is accessible above the water surface, with the pipeline suspended between two points
at the same level. '
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To simulate the laying vessel’s motions in the seaway, the upper end of the pipeline is hinged to
a planar motion mechanism providing unidirectional harmonic oscillations whose motion direction,
amplitude and frequency can be varied arbitrarily.

At the opposite end, the pipeline lays on a model ‘seabed’, which can be fixed horizontally at
different depths d* below the upper end. To simulate soil elasticity, the soil model consists of a
series of U-shaped steel elements bridged with a tensioned steel wire. The pipe, after touch-down,
is supported by these steel wires, their tension being adjusted with screws to represent a defined
subgrade modulus. Such bottom supports are positioned at distances of 20 cm. The first five of
them are equipped with strain gauges to detect the touch-down point. At the end of this soil model
the pipe is attached to a load cell. Its position can be shifted horizontally to adjust the static
horizontal force.

The static shape of the pipeline is registered with a sensor which can be moved to different
horizontal coordinates and lowered until contact with the pipeline is detected, thus defining the
vertical coordinate.

6.4 The Model Tests

The purpose of the model tests was not to simulate full-scale problems, but to validate the theory.
Nevertheless, model similarity is necessary to ensure that the validation takes place within a realistic
range of parameters. The results of model scale calculations and model tests are compared.

From all available publications of planned or executed pipelaying projects, a file was made
which allows to extract the parameters w, H,d, EI, R and m. Since H and R are missing in most
publications, R was selected to correspond to 300 N/mm? static bending stress on the stinger, and
the required horizontal force H is calculated for the S-method to limit the maximum static bending
stresses to 300N/mm? and the required stinger length to 150m.

Applying the previously developed expressions for length, force and time scale, a corresponding
file was generated listing the model horizontal force H*, the lowest excitation period corresponding
to a full-scale wave period of 4s and the height and length of the model pipe arrangement to check
the feasibility of a model test.

Two typical examples are:

location Frigg-Karmgy Strait of Messina
Lund (1976)  Anonymus (1979)

ext. diameter of steel pipe 406.0 mm 508.0 mm

steel wall thickness 15.9 mm 23.8 mm

concrete coating thickness 63.5 mm 0 mm

submerged weight per length w 1215.7 N/m  843.66 N/m

effective mass per length m 582 kg/m 501.50 kg/m

flexural rigidity EI 76.7T MN -m? 219.09 MN - m?

laying depth d 150 m 23T m

horizontal force H 333 kN 279 kN

length scale A, 43.477 69.597

force scale Af 14827 16471

time scale A; 6.458 9.110

Two types of results are obtained from the model tests:
— long time photographs of small light-emitting diodes attached to the pipeline to register trajec-
tories
— time series (using our proven model testing software developed by Weede et al.) from:
D> strain gauges located along the pipeline,
> the load cell at the bottom
D> the directional load cell at the top, the signals of which were geometrically transformed to
the force component in the oscillating direction axial to the pipe
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The trajectory photographs are compared with theoretical results by linking the calculation
subroutines to a program which draws trajectories in exactly the same scale. Results referring to
the Messina pipeline are presented in Figs. 3 and 4.

The measured time series of each model test were compared to a theoretical simulation. Fig. 5
shows theoretical (left) and model test results (right) for the Frigg-Karmgy pipeline. The figures
represent the pipeline’s behaviour at four different frequencies, starting with an extremly slow
motion in the upper diagrams. The dynamic bending stresses were interpolated between the strain
gauges with the parabolic blending method. The shape of the stress curves at the lowest frequency
(upper diagrams) has one node in the free pipe span suggesting the second mode shape. However,
this variation of the stress along the pipeline results from the varying positions of the hinged
upper end of the pipeline and the associated steady-state pipe geometries. At higher frequencies,
the number of nodes increases, and the dynamic response is influenced by nonlinear interaction
between bending and tension and by hydrodynamic damping. The calculated stresses compare well
with the measured ones. The upper and lower stress diagrams are accompanied by time series of
the dynamic tension force. As theory compares well with measured data for the slowest and fastest
motion, the dynamic tension forces for the other frequencies are not shown. These time series
clearly show the nonlinear behaviour. For confirming Kirchhoff’s hypothesis (Kauderer 1958) that
the dynamic tension does not vary along the pipeline, it was measured at both ends of the pipeline.
The lowest diagram on the right side shows that both load cell signals, indeed, are equal.

7. Full-Scale Calculations

Example calculations for the Messina Pipeline have been performed to illustrate the influence of
the following parameters: wave period 7', the vessel’s motion direction and amplitude at the lift-off
point, the static horizontal force H and the depth d. Figs. 6 fI. illustrate the dynamic bending
deflection and the corresponding stresses for different values of these parameters. Note that the
stresses are presented at the upper and lower fiber of the pipeline superimposing the static stress
and the envelope of the dynamic effects.

The figures show also the differences between the two modes of tensioner control:

~ Blocked tensioner: The vessel fully imposes its motions to the upper end of the free pipe span in
its tangent direction. This yields large oscillations of tension force.

— Compensating tensioner: The two caterpillar tracks which grip the pipe provide exactly the
relative axial motion required to keep the tension force on a constant value. This motion, inside
the welding station as well as at the lift-off point, is the difference between the bending-induced
axial pipe deflection and the vessel motion tangent to the pipe.

It is evident that any pipe laying procedure has to cope with either high variations of the
tension force or relative axial motions between pipe and vessel. Tension force peaks beyond the
tensioner capacity may cause the tensioner either to squeeze the pipe or to damage the concrete
coating, and large tension force variations mutually cause large bending oscillations. Relative axial
motions, on the other hand, are disadvantageous for manufacturing. In general, small motions of the
pipelaying vessel are advantageous for operations both with blocked and compensating tensioner,
which explains the preference for semisubmersible laying vessels.

8. Conclusions

J

The paper describes and validates a large deflection dynamic analysis method for submerged
circular beams, stiffened by a longitudinally variable tension force and exposed to boundary-value
induced bending vibrations interacting with a dynamic tension force. To a frequency domain finite
element solution a modally decomposed contribution from the nonlinear effects is superimposed in
the time domain. The method is applied to the suspended free span of an offshore pipeline being
installed from a vessel oscillating in the seaway. The boundary conditions particular to offshore

pipelaying include soil mechanics at the bottom and a sophisticated control of the tensiqnipg
machine at the top. i
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Dynamic effects pose severe problems for pipelaying in rough sea conditions, especially if the
laying vessel moves substantially in short waves. Blocking of the tensioner results in extremly high
axial dynamic forces which may cause the tensioner to damage the pipe when trying to retain it.
Operating the tensioner with constant tension force is associated with axial motions between laying
vessel and pipeline with which the manufacturing procedure has to cope. Example calculations prove
that dynamic effects should be taken into account at any laying operation. The calculation method
for these effects is versatile, allowing adaptations to any specific laying problem.

References

BLIEK,A. and TRIANTAFILLOU,M.S. (1985), Nonlinear cable dynamics, Behaviour of Offshore Structures,
Elsevier Science Publishers B.V., Amsterdam

BORGMAN,L.E. (1969), Ocean wave simulation for engineering design, Journal of the Waterways and
Harbors Division, Proc. of the ASCE 95 / WW4

BRUSCHLR., MONTESI, M., RAGAGLIA,R. and TURA,F. (1987), A new boundary element for free span
analysis, Offshore and Arctic Pipelines

BURNETT, D.S. (1987), Finite element analysis, Addison-Wesley Publishing Company, Reading

CLAUSS,G.F., LEHMANN,E. and OSTERGAARD,C. (1988), Meerestechnische Konstruktionen, Springer-
Verlag, Berlin

CLAUSS,G., KRUPPA,C., WOLF E. and STAMM,K. (1977), Parameterstudie iiber das Verlegen von Pipe-
lines in groBen Meerestiefen, Meerestechnik 8 Nr.3 Juni

CLAUSS,G. and KRUPPA,C. (1974), Model testing techniques in offshore pipelining, OTC 1973 Houston

CLAUSS,G.F. and WEEDE,H.E.W. (1990), Dynamics of pipelines during laying operations, Offshore En-
gineering, Proc. of the 7th Int.Symp.on Offsh.Eng. held at COPPE, Fed.Univ. of R.J., Brazil, Aug.1989,
Pentech Press, London

GARDNER,T.N. and KOTCH,M.A. (1976), Dynamic analysis of risers and raissons by the element method,
OTC 2651, Houston

HAPEL,K. and KOHL, M. (1980), Erzwungene Transversalschwingungen langer Drilling-Riser - der Damp-
fungsparameter der linearisierten Widerstandskraft, Der Stahlbau 11

HOBBS, R.E. (1986), Influence of structural boundary conditions on Pipeline Free Span Dynamics, Proc. of
the 5th OMAE Symposium, Tokyo

KAUDERER,H. (1958), Nichtlineare Mechanik, Springer-Verlag, Berlin/Géttingen/Heidelberg

KIRK,C.L. and ETOK,E.U. (1979), Wave induced random oscillations of pipelines during laying, Applied
Ocean Research, Vol.1, No.1

KROLIKOWSKI,L.P. and GAY,T.A. (1980), An improved linearization technique for frequency domain riser
analysis, OTC 3777, Houston

LANGNER,C.G. and AYERS,R.R. (1985), The feasibility of laying pipelines in deep waters, OMAE 85,
Houston

LUND,S. (1976), Geplante Pipeline durch den Norwegischen Graben, Meerestechnik mt 7 Nr.5, Oktober

MALAHY,R.C. (1986), A nonlinear finite element method for the analysis of offshore pipelines, risers and
cable structures, Proc. of the 5th OMAE Symposium, Tokyo

OLIVER,J. and ONATE,E. (1985), A finite element formulation for the analysis of marine pipelines during
laying operations, Journal of Pipelines, 5, pp.15-35

PEDERSEN,P.T. and YAN,J. (1986), 3-D static analysis of pipelines during laying, OTC 5297, Houston
ANONYMUS (1979), The gas pipeline from Algeria to Italy, Pipes & Pipelines International, Dec.

VLAHOPOULOS,N. and BERNITSAS,M. (1990), Three-dimensional nonlinear analysis of pipelaying, Ap-
plied Ocean Research, Vol.12, No.3

WEEDE,H. (1990), Dynamik offshoretechnischer Linientragwerke am Beispiel der Pipelineverlegung, Dis-
sertation, TU Berlin :

94 Schiffstechnik Bd. 38 — 1991 / Ship Technology Research Vol. 38 — 1991




?o:o:owo |DJUOZIJOY) S2140}03[DJ} |DjUBWIIadXa PUD |DO1}3I03Y} JO uos1ypdwod - sojwoukp autjedld  g'614

- (W)X ¢ z o daL <— [wWlx 7 z o dal - (wx 9
I H T ; ' _
! R
!
- } _
. & $31J0}23(DJ}
A |ojuawIadxa
1 !
T
sa140}23[DJ}
|D21}2403Y}
) | al N 1 A | I ;
i LR g IR

!

szel=,L

NY6'9L=H 82J0§ UOISU3} DjuoZioy
wwQZ =P apnjljdwo uoyjow jpjuoczitoy - 1 potJad uol}D}1o%x3 japow

~N

(w],z

[32]

-

o~

[w),2

™

-

95

1991 / Ship Technology Research Vol. 38 — 1991

Schiffstechnik Bd. 38




(UO1}D}1DXd |DIXD} S3140323[DJ} |jDjuswiladxa puD |DII}BJ03Y]} JO uostJndwod - sOIWDUAp auljadid 4614
— (W)X 4 dal <— [w)x ¢ daL
' : ~—0
= = 11l
I - N
i sallo}oe(pJ} ¢ ..ud.,
|DlusWIladxd —
0
-t
- N .~|/_k~
sa1J0}23(DJ} =]
|D21}34084} H
Z#
E)

N76°9L=H 320} UOISUR} |DjUOZIIOY
wwQz=D apnjjdwp uoyow |DIXD - | potsad uoIjD}ioxa |apow

1991

1991 / Ship Technology Research Vol. 38

Schiffstechnik Bd. 38

96




s 1G] 1€
e
LI e 1y
T K
: T D
= FEM ] I
ad
L
3 ] )
m L -
LS
N g g
; AR
o S\l E >
"% LN LN o
> fo% RO R ROF

chhoff hypothesis

e identical at any location :Kir

Al
N
<

1

Fig.5

L > 5 ¢

.(Ecj'g '_6‘ 'é

> " 0.

° o E| >
N LA

f
citation
N2 NN

|||||||

< P ) 1 tonadl ; L sl o
: ; ? ® RQog Re R Reg
[N [N] [zww/N] [ww/N] ) B PV L TR O,
$Ssaljs 92J0
Buipuaq J1WDUAP |D!xé ssayjs  Buipueq olwoudp 22J0) JDIXD  uOHOW

Schiffstechnik Bd. 38 — 1991 / Ship Technology Research Vol. 38 — 1991

& I
s} )

Pipeline dynamics - comparison of theoretical and experimental stresses and forces '
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Fig.15: Variation of lay depth d — compensating tensioner
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