Ideas towards X3D-beyond core/VRML 2002 - Holger Grahn

Feature Ideas towards X3D-beyond core/VRML 2002

Holger Grahn

blaxxun interactive

holger@blaxxun.com
last updated 10/26/99

Intro

This document describes ideas for extending VRML 97 and higher level X3D profiles.

The collection summarizes different discussion of the VRML mailing list and writes downs in more detail some ideas collected over time.

Many ideas are influenced by actual project requirements while working at blaxxun and discussions with content builders.

The document is divided into different sections, and the proposed extensions in these sections are standing on its own. In some parts the ideas are only sketched and need more critics, discussion and refinement.

Interfaces

Interfaces are extensions allowing easier modeling and are an extension to the VRML 97 PROTO mechanism.

VRML Interface statement

An interface statement consists of the INTERFACE keyword, followed in order by the Interface name, Interface interface declaration:

 INTERFACE <name> [<declaration>]
An Interface interface declaration consists of eventIn, eventOut, field, and exposedField declarations (see 4.7, Field, eventIn, and eventOut semantics) enclosed in square brackets. Whitespace is not required before or after the brackets.

EventIn declarations consist of the keyword "eventIn" followed by an event type and a name:

 eventIn <eventType> <name>

EventOut declarations consist of the keyword "eventOut" followed by an event type and a name:

 eventOut <eventType> <name>

Field and exposedField declarations consist of either the keyword "field" or "exposedField" followed by a field type, a name, and an initial field value of the given field type.

 field <fieldType> <name> <initial field value>

 exposedField <fieldType> <name> <initial field value>

the new possible element in declarations is :

 interface <interfaceName> <name>

This element specifies that the PROTO supports or implements a specified interface.

The elements in the interface are available via <name>.<element> or directly via <element>. If element is multiply declared e.g. the first one in declaration order and depth first search is used.

Example 1:

INTERFACE Ibbox [

exposedField SFVec3f bboxCenter 0 0 0

 exposedField SFVec3f bboxSize -1 -1 -1

]

PROTO MyNode [interface Ibbox bbox

exposedField MFNode children]

{

Group {

bboxCenter IS
bbox.bboxCenter

bboxSize IS
bbox.bboxSize

children IS children

}

}

DEF a MyNode { bboxSize 1 2 3 bboxCenter 0.5 0.5 0.5 }

or

DEF a MyNode { bbox.bboxSize 1 2 3 bbox.bboxCenter 0.5 0.5 0.5 }

DEF a MyNode { bbox Ibbox { bboxSize 1 2 3 bboxCenter 0.5 0.5 0.5} }

or

DEF a MyNode1 { bboxSize 1 2 3 bboxCenter 0.5 0.5 0.5 }

DEF a MyNode { bbox = a.bbox }

The field set bboxCenter bboxSize is grouped (or factored out) into the Interface Ibbox.

A set of Interfaces can be reused during the writing of PROTO's and Scripts, it make the authoring process more structured and less error prone.

Interface derivation:

Interfaces can be derived from an another interfaces.

Interface delegation.

For each built-in node a corresponding Interface is defined internally. This interfaces and their derivation tree is listed in Appendix A.

If a proto supports a given interface the implementation of an interface can be delegated to other nodes.

Example :

PROTO MyMaterial [INTERFACE Material material

 exposedField SFNode myProperties NULL

]

{

Material IS material

{ }

}

MyMaterial { diffuseColor 1 0 0 physicalProperties NULL }

In this example the implementation of the built-in Material interface is delegated to the Material node.

Reusing the built-in interfaces saves a lot of typical typing in the PROTO process.

Casting nodes to the supported interface.

The Scripting language allows additional constructs to query and cast interfaces.

var x;

x = a;

var b= a.getInterface('Ibbox');

// get only the bbox part of MyNode above.

Browser.print(b.bboxSize + b.bboxCenter);
// will print the values from MyNode

b.bboxSize = new SFVec3f(7,9,5);

// will change the values from MyNode

<node>.getInterface(); // returns the primary (i.e. first) interface of the node

<node>.getInterface(interfaceId); // returns the interface on node with the given id. or NULL if that interface is not supported.

<node>.supportsInterface(interfaceId) // returns true if the node supports the interface.

<nodeA>.assign(<nodeB>) does a 1:1 assignment of all exposedFields from nodeB to nodeA. SFNode & MFNode values are copied by references. (i.e. no deep copy).

var x = new SFNode('MyMaterial { }');

bboxA=x.getInterface('Ibbox');

bboxB=a.getInterface('Ibbox');

x.assign(b);

Syntax issues :

Java like :

INTERFACE <interfaceName> EXTENDS superInterfaceName

PROTO <protoName> IMPLEMENTS interface1, .., interfacen

C++ like:

INTERFACE <interfaceName> : superInterfaceName

PROTO <protoName> : interface1, .., interfacen

The problem with this syntax is how to support the delegation feature in the PROTO implementation.

Event handlers and direct scripting.

Event handlers with scripts in the built-in scripting language (vrmlscript) can be embedded directly into node declarations without requiring an extra Script node and Routes.

Oberserving eventOuts.

Transform {

ON translation_changed(v) { print('I got a new translation value :' +v); }

}

handling eventIn's in PROTO

PROTO MyTransform [

interface Transform tx

eventOut SFVec3f translationShifted

]

{

ON set_translation(v) { print('I got a new translation value :' +v);

 translationShifted = new SFVec3f(v.x+1,v.y,v.z);

 }

Transform IS tx

{ }

}

Observing mouse events:

Mouse events can be directly observed. This allows more compact code in comparison with a combination of TouchSensor, ROUTE and Script.

Similar to DOM level 2 the event information is passed in as an Event object.

DEF me Group {

ON mouseOver(e) { print('Mouse is moved on me '+this.getName()+'At '+e.position); }

ON mouseOut(e) { print('Mouse is moved away from me '+this.getName()+'At '+e.position);

ON mouseDown(e) { print('Mouse is over and button is pressed on me '+this.getName()+'At '+e.position); }

ON mouseUp(e) { print('Mouse is released over me '+this.getName()+'At '+e.position);

ON mouseMove(e) { print('Mouse moved over me '+this.getName()+'At '+e.position);

ON mouseClick(e) { print('Mouse clicked me '+this.getName()+'At '+e.position);

ON mouseDblClick(e) { print('Mouse double clicked me '+this.getName()+'At '+e.position+e.type);

children [… some geometry …]

}

To Do: detailed descriptions of event types and the Event object.

Alternative syntax:

ON mouseEvent<down,up,click,dblClick, …>(e) { print(Got event '+this.getName()+'At 'e.position); }

handling initialize & shutdown events in PROTO's

PROTO MySixSidedCylinder [

interface Geometry geometry

field SFFloat radius

]

{

DEF IFS = IndexedFaceSet

IS geometry

{

coord DEF Coord Coordinate []

…

}

ON initialize (this) {

print('Compute coordinates & facelist of IFS');

coord.points = new MFVec3f(…);

IFS.coordIndex = new MFInt32(…);

}

ON shutdown (this) {

}

}

ON initialize

ON shutdown

handlers are also allowed outside a proto context.

The handlers are called after parsing / before deletion of a scene.

Direct object functions:

PROTO MyMaterial [INTERFACE Material material

 exposedField SFNode myProperties NULL

 function setRed()

 function scale(f)

]

{

DEF M Material IS material

{ }

 function setRed() { material.diffuseColor = new SFColor(1,0,0); }

 function scale(f) { material.diffuseColor *= f; }

}

DEF M MyMaterial { diffuseColor 1 0 0 physicalProperties NULL }

in some script :

M.setRed();

M.scale(0.5);

Scoping rules for direct scripts:

direct scripts are scoped to the namespace of the enclosing node

interfaces, fields exposedFields eventIn's eventOut's of the enclosing node or PROTO are directly accessible by their names.

The variable this contains a reference to the enclosing node or Proto instance.

Named nodes in the context are directly available in the namespace.

Note: Direct script extensions can not be modified at run-time unlike the VRML Script

Node where a new url can be dynamically loaded. So the parsing and name resolving could be done directly at parse time of the enclosing context (e.g. VRML file, Inline, PROTO)

Content requiring dynamic loading / unloading of Script code can still use the Script Node.

Direct Route extension :

DEF t1 Translation { translation 1 2 3 }

DEF t2 Translation { translation = t1.translation } ## field value copied at parse time

DEF t1 Translation { translation 1 2 3 }

DEF t2 Translation { translation IS t1.translation } ## a route is established

equivalent to

ROUTE t1.translation_changed TO t2.set_translation

DEF t2 Translation { translation = t1.translation IS t1.translation } ## field value copied at parse time && route is established

Strong typing

SFNode and MFNode declarations can be typed an required interface by adding the Interface name in <> brackets:

exposedField SFNode<Geometry> myGeom

The SFNode field myGeom can only contain references to Nodes supporting the Geometry interface.

exposedField MFNode<Group> myGeom

Browsers are not required doing run-time checking on node assignments.

For Authoring tools and VRML debuggers it is strongly desired to support and check the strong typing during runtime and flag any violations.

Field hints

Field hints are declaring low-level properties for fields. Field hints are predefined keywords given after the field value .

HINT
MEANING

SHARED_READ
In MU context, this field may receive dynamic updates from the network

SHARED_WRITE
In MU context, writes to this field send network messages out, all other clients having a SHAREAD_READ on this field may receive the update from the network

SHARED
same as SHARED_READ SHARED_WRITE together

PERSISTENT
the value of the field is restored at scene enter time, and saved at scene exit time

PROTECTED
for PROTO interface elements :the field can not be accessed from the outside of the PROTO

The Shared hints are ignored by non Multi-User enabled browsers, the PERSISTENT state may be ignored as well.

Nodes with shared fields must have a unique node name, if a node is not named a world wide unique name is automatically generated using a GUID generator.

Example:

DEF t2 Translation {

translation 0 0 0 SHARED

Switch {

whichChoice -1 SHARED_WRITE

}

}

Issue: should SHARED_READ SHARED_WRITE and PERSISTENT should be allowed on SFNode and MFNode fields ?

TBD: sample VRML utf8 like file format specification for storing SHARED messages and the persistent state.

Node extensions

BoolSwitch

BoolSwitch {

exposedField SFBool enabled
TRUE
exposedField SFNode on NULL

exposedField SFNode off NULL
}

BoolSwitch behaves like a Switch node, selection the on scene graph if enabled = TRUE and the off scene graph if enabled = FALSE

BlendSwitch

BlendSwitch {

exposedField SFFloat alpha
1.0
exposedField SFNode on NULL

exposedField SFNode off NULL
}

The two scenegraphs are rendered with alpha blending enabled.

on is rendered with the alpha channel set to alpha

off is rendered with an alpha of (1.0 - alpha).

transparency values in Material nodes are multiplied with the alpha factor resulting from the BlendSwitch node.

Several BlendSwitch node might be nested, the alpha values are multiplied.

Browser should handle the special case of transparency = 0.0 and 1.0 explicitly, rendering only one of on/off in this case.

BlendSwitch can be used to easily fade in/out or between different scene graphs,

in VRML 97 this was not possible, beside manually adjusting the transparency field of all material nodes in the affect sub scene graph.

Issue: Better model this node in Interpolator pattern allowing multiple keyValues and keys ?

BlendSwitch {

exposedField SFFloat fraction
0.0
exposedField SFInt32 key []

exposedField MFNode keyValue []
}

The blending is done between two keyValues depending on fraction.

Issue: allowing Switch, BoolSwitch and LOD as intermediate nodes in Shape , Appearance ?

Switch, BoolSwitch and LOD are selecting a single node or NULL from a set. The idea is to extend the semantics to allow easier switching of Appearances Materials and Textures as well.

This nodes should be allowed as direct child nodes in Shape and Appearance nodes.

Scenario 1:

Shape {

appearance DEF theSwitch BoolSwitch {

on Appearance { material Material { diffuseColor 1 0 0 }}

off Appearance { material Material { diffuseColor 1 1 1 }}

}

geometry SomeGeometry {}

}

DEF TS TouchSensor { }

ROUTE TS.isOver TO theSwitch.enabled

The above fragment would setup an automatic highlight by changing an appearance if the mouse is over an geometry object.

Scenario 2:

Shape {

appearance Appearance {

texture LOD { range [50] level [ImageTexture { url "myTexture.jpg" }, NULL]}

material Material { diffuseColor 1 1 1 }

}

geometry SomeGeometry {}

}

The above fragment would automatically turn off texturing for a far away object.

Issue : support IndexedFaceSet, Sound Text etc. too ?

Issue: Allow BlendSwitch for fading between Coordinate / Color / Normal / TextureCoordinate / Material /Texture nodes ?

Issue: Allow n-children entries similar to Switch node choice field ?

bounding box fields for TimeSensor

TimeSensor's are currently more of a global type sensor,

but usually a TimeSensor only effect objects in a certain region of a scene.

By adding bboxSize bboxCenter fields to the TimeSensor node a TimeSensor execution can be culled by a Browser if the bounding box of the TimeSensor transformed by the local transform matrix is out of the view frustum.

Issue: are simply no events sent out from a culled TimeSensor, or are only continuos events like fraction_changed , time_changed and cycleTime blocked ?

PopupText

PopupText {

exposedField SFColor backgroundColor 0 1 0 # yellow

exposedField SFColor borderColor 1 1 1

exposedField SFNode text NULL

exposedField SFVec2f translation 0 0

}

PopupText allows the display of 2D text overlay on top of 3D.

Its intended use for usability enhancement of VRML scenes.

The text member contains a VRML Text node, the text is frame by an rectangle filled in the color backgroundColor

with a one pixel wide border colored in borderColor.

PopupText is centered around the location 0 0 0 of the current coordinate system.

translation is an optional translation given in relative window coordinates.

Usage Scenario :

DEF theSwitch BoolSwitch {

on PopupText { text Text { string "Hello, click me") }

}

DEF TS TouchSensor { }

ROUTE TS.isOver TO theSwitch.enabled

Whenever the mouse is over an object, an popup text appears.

Library:

Library {

exposedField
 MFString url []

exposedField children []

field
 SFVec3f bboxCenter 0 0 0

 field SFVec3f bboxSize -1 -1 -1 # (0,
) or -1,-1,-1

}

The Library makes the resources of an VRML file available for scripting.

From the API point of view Library supports the Namespace interface:

NameSpace :

Node getNode(String name) - lookup node by name

boolean supportsNode(String nodeClassOrProtoName) - does namespace has a proto definition for nodeClassOrProtoName

Node createNode(String nodeClassOrProtoName, StringArray fieldNames, FieldArray fieldValues) - create an instance of a proto give the name and field values as name - value pairs

Node createNode(String nodeClassOrProtoName, FieldArray fieldValues) - create instance of proto given the field values in declaration order.

Library supports two variants:

A) url is empty, children are present :

scenegraph in children forms its one namespace including DEF names, protos etc.

Especially this form can be used to place back/expand Inline files back into the main file without naming problems.

B) url not empty,

scenegraph of library is read into children and is accessible by scripting.

Issue: Are names of the enclosing namespace (i.e. the file containing the namespace node) available too during parsing of children ? (No, for compatibility with the Inline)

Should the functionality be limited to a pure library holding only the PROTO/Interface definitions of the namespace ?

Usage Scenario:

DEF theLibrary Library {
url "myGreatProtos.wrl" }

}

Script {

field SFNode theLibrary USE theLibrary

eventIn SFTime trigger

url "vrmlscript:

function trigger() {

if (theLibrary.supportsNode('Torus') {

n = theLibrary.createNode('Torus', new MFString ('outerRadius'), new Array(new SFFloat(0.5));

}

}

"

}

The script dynamically creates and initializes some Sphere node. (VRML 2.0 would require createVrmlFromString and the inclusion of the EXTERNPROTO definitions into the string.)

Referering to a library:

DEF theLibrary Library {
url "myGreatProtos.wrl" }

}

Shape {

geometry theLibrary.Torus { outerRadius 0.5 }

}

The issues here is that parsing / instantiating the Torus node now requires the presence of the Library, i.e. library must first be loaded & present before the processing of a Torus instance can continue.

Performance extensions:

StaticGroup {

 field
 MFNode children []

 field SFVec3f bboxCenter 0 0 0

 field SFVec3f bboxSize -1 -1 -1 # (0,
) or -1,-1,-1

}

Strict Version:

The children scenegraph may only be composed out of Transform Group Shape Appearance Material ImageTexture PixelTexture MultiTexture and Geometry nodes. If Protos are instanced, the PROTO definition may only consists out of these nodes.

Issue:The children scenegraph may/may not reference nodes outside the scope of the enclosing StaticGroup, likewise the other scene graph may/may not reference nodes contained in the StaticGroup.

Lesser Version:

In addition the nodes TouchSensor VisibilitySensor LOD Switch BoolSwitch are allowed.

Open Version:

any node is allowed, browser must analyze ROUTE information and Script directOutput Graph to evaluate node usage prior to optimization.

This node provides a hint to the browser that the author:

· never will access or modify nodes in the children scene graph

· will never want to get node by names from the children scene graph

The browser can restructure and optimize the scene graph in any way.

Potential optimizations are:

· Outmultiply the effects of Transform and TextureTransform nodes.

· elimination or deletion of redundant or wrong data from the nodes.

· grouping off geometry together by common texture or material attributes

· combination or splitting of geometry for better throughput

· compute visibility, culling preprocessing information

· store the scene graph in an internal optimized format (e.g. OpenGL display list.)

Selection

Selection {

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children []
 exposedField SFBool collide TRUE
 exposedField SFBool select TRUE
 field SFVec3f bboxCenter 0 0 0

 field SFVec3f bboxSize -1 -1 -1

 field SFNode proxy NULL
 eventOut SFTime collideTime

}

The Selection nodes allows to turn off selection processing (TouchSensor Anchor etc) for a given scene graph. As a hint the author can specify a proxy to replace a potential costly selection processing operation on lower resolution proxy geometry. Selection is a direct complement to the Collision node, allowing only the tuning of the collision operation, selection in additions supports the semantics of the Collision node.

Rendering extensions:

Multi texturing

Today Graphics API's are supporting multiple textures per rendering. Typical hardware today can handle 2 textures in a single path.

MultiTexture

MultiTexture {

exposedField MFNode texture []

list of single Textures nodes

}

MultiTexture enables Multi texturing, conceptually a 3D object is textured with a texture composed out of several individual textures. It can be used as a value texture field in an Appearance node.

TextureOp

TextureOp {

exposedField SFNode texture NULL

ImageTexture PixelTexture MovieTexture node
exposedField SFNode transform NULL

texture transform node

exposedField SFString op "modulate"

exposedField MFInt32
option []

low level ops (e.g. D3D TextureStageState ops)

exposedField MFFloat
parameter []

low level arguments e.g. D3D bumpenvmat etc

}

Possible operators:

modulate
multiply texture color with current color

modulate_white
same as modulate, but replacing material diffuse color with white. (same as VRML 97 with RGB/RGBA texture)

replace

replace current color

If transform is NULL the transform is set from the parent Appearance node, otherwise the transform is combined with the textureTransform from the parent Appearance node.

Option and parameter are encoding low level texture processing operations and their arguments. (see below for the set of options available in the Direct X 6/7 API)

MultiTextureCoordinate

MultiTextureCoordinate {

exposedField MFNode texCoord []# list of single TextureCoordinate nodes

}

MultiTexture requires also multiple texture coordinates per vertex. This node can be used to set the texture coordinates for the different texCoordinate channels.

By default if using MultiTexture with an IndexedFaceSet without a MultiTextureCoordinate texCoord node, texture coordinates for channel 0 are replicated along the other channels.

Example :

Shape {

appearance Appearance {

texture MultiTexture {

texture [

TextureOp {

op "replace"

texture ImageTexture { url "brick.jpg") }

}

TextureOp {

op "modulate"

texture ImageTexture {

repeatS FALSE repeatT FALSE

url "light.png" }

transform TextureTransform { scale 0.5 0.5 …. }

}

]

}

}

geometry IndexedFaceSet {

…

texCoord MultiTextureCoord {

texCoord [
TextureCoordinate { … }

TextureCoordinate { }]

}

}

Issue: By changing the field type of texCoord from SFNode to MFNode the MultiTextureCoordinate node is unnecessary.

By changing the field type of texture from SFNode to MFNode in the Appearance node the MultiTexture node is unnecessary.

Issue: the low-level texture operations are highly device specific, the question is if its possible to define a abstract set of operations and describe the exact emulation (e.g. using multi-pass rendering) if the operation is not available in hardware.

Implementation notes:

OpenGL texture blend modes

REPLACE

MODULATE

DECAL

BLEND

Other attributes:

BORDER COLOR

Microsoft Direct X 6 Texture modes (from their SDK documentation)

D3D TEXTUREBLEND modes

 D3DTBLEND_DECAL = 1,

 D3DTBLEND_MODULATE = 2,

 D3DTBLEND_DECALALPHA = 3,

 D3DTBLEND_MODULATEALPHA = 4, // maps to OpenGL modulate, but not available for each renderer.

 D3DTBLEND_DECALMASK = 5,

 D3DTBLEND_MODULATEMASK = 6,

 D3DTBLEND_COPY = 7,

 D3DTBLEND_ADD = 8,

D3DTEXTUREOP

The D3DTEXTUREOP enumerated type defines per-stage texture blending operations. The members of this type are used when setting color or alpha operations by using the D3DTSS_COLOROP or D3DTSS_ALPHAOP values with the IDirect3DDevice3::SetTextureStageState method.

typedef enum _D3DTEXTUREOP {

 D3DTOP_DISABLE = 1,

 D3DTOP_SELECTARG1 = 2,

 D3DTOP_SELECTARG2 = 3,

 D3DTOP_MODULATE = 4,

 D3DTOP_MODULATE2X = 5,

 D3DTOP_MODULATE4X = 6,

 D3DTOP_ADD = 7,

 D3DTOP_ADDSIGNED = 8,

 D3DTOP_ADDSIGNED2X = 9,

 D3DTOP_SUBTRACT = 10,

 D3DTOP_ADDSMOOTH = 11,

 D3DTOP_BLENDDIFFUSEALPHA = 12,

 D3DTOP_BLENDTEXTUREALPHA = 13,

 D3DTOP_BLENDFACTORALPHA = 14,

 D3DTOP_BLENDTEXTUREALPHAPM = 15,

 D3DTOP_BLENDCURRENTALPHA = 16,

 D3DTOP_PREMODULATE = 17,

 D3DTOP_MODULATEALPHA_ADDCOLOR = 18,

 D3DTOP_MODULATECOLOR_ADDALPHA = 19,

 D3DTOP_MODULATEINVALPHA_ADDCOLOR = 20,

 D3DTOP_MODULATEINVCOLOR_ADDALPHA = 21,

 D3DTOP_BUMPENVMAP = 22,

 D3DTOP_BUMPENVMAPLUMINANCE = 23,

 D3DTOP_DOTPRODUCT3 = 24,

} D3DTEXTUREOP;

D3DTEXTUREFILTER

The D3DTEXTUREFILTER enumerated type defines the supported texture filter modes used by the D3DRENDERSTATE_TEXTUREMAG render state in the D3DRENDERSTATETYPE enumerated type.

typedef enum _D3DTEXTUREFILTER {

 D3DFILTER_NEAREST = 1,

 D3DFILTER_LINEAR = 2,

 D3DFILTER_MIPNEAREST = 3,

 D3DFILTER_MIPLINEAR = 4,

 D3DFILTER_LINEARMIPNEAREST = 5,

 D3DFILTER_LINEARMIPLINEAR = 6,

} D3DTEXTUREFILTER;

D3DTEXTUREMAGFILTER

The D3DTEXTUREMAGFILTER enumerated type defines texture magnification filtering modes for a texture stage.

typedef enum _D3DTEXTUREMAGFILTER {

 D3DTFG_POINT = 1,

 D3DTFG_LINEAR = 2,

 D3DTFG_FLATCUBIC = 3,

 D3DTFG_GAUSSIANCUBIC= 4,

 D3DTFG_ANISOTROPIC = 5,

} D3DTEXTUREMAGFILTER;

D3DTEXTUREMINFILTER

The D3DTEXTUREMINFILTER enumerated type defines texture minification filtering modes for a texture stage.

typedef enum _D3DTEXTUREMINFILTER {

 D3DTFN_POINT = 1,

 D3DTFN_LINEAR = 2,

 D3DTFN_ANISOTROPIC = 3,

} D3DTEXTUREMINFILTER;

D3DTEXTUREMIPFILTER

The D3DTEXTUREMIPFILTER enumerated type defines texture mipmap filtering modes for a texture stage.

typedef enum _D3DTEXTUREMIPFILTER {

 D3DTFP_NONE = 1,

 D3DTFP_POINT = 2,

 D3DTFP_LINEAR = 3,

} D3DTEXTUREMIPFILTER;

Members

D3DTFP_NONE

Mipmapping disabled. The rasterizer should use the magnification filter instead.

D3DTFP_POINT

Nearest point mipmap filtering. The rasterizer uses the color from the texel of the nearest mipmap texture.

D3DTFP_LINEAR

Trilinear mipmap interpolation. The rasterizer linearly interpolates pixel color using the texels of the two nearest mipmap textures.

D3DTEXTURESTAGESTATETYPE

The D3DTEXTURESTAGESTATETYPE enumerated type defines texture stage states. Members of this enumerated type are used with the IDirect3DDevice3::GetTextureStageState and IDirect3DDevice3::SetTextureStageState methods to retrieve and set texture state values.

typedef enum _D3DTEXTURESTAGESTATETYPE {

 D3DTSS_COLOROP = 1,

 D3DTSS_COLORARG1 = 2,

 D3DTSS_COLORARG2 = 3,

 D3DTSS_ALPHAOP = 4,

 D3DTSS_ALPHAARG1 = 5,

 D3DTSS_ALPHAARG2 = 6,

 D3DTSS_BUMPENVMAT00 = 7,

 D3DTSS_BUMPENVMAT01 = 8,

 D3DTSS_BUMPENVMAT10 = 9,

 D3DTSS_BUMPENVMAT11 = 10,

 D3DTSS_TEXCOORDINDEX = 11,

 D3DTSS_ADDRESS = 12,

 D3DTSS_ADDRESSU = 13,

 D3DTSS_ADDRESSV = 14,

 D3DTSS_BORDERCOLOR = 15,

 D3DTSS_MAGFILTER = 16,

 D3DTSS_MINFILTER = 17,

 D3DTSS_MIPFILTER = 18,

 D3DTSS_MIPMAPLODBIAS = 19,

 D3DTSS_MAXMIPLEVEL = 20,

 D3DTSS_MAXANISOTROPY = 21,

 D3DTSS_BUMPENVLSCALE = 22,

 D3DTSS_BUMPENVLOFFSET = 23,

} D3DTEXTURESTAGESTATETYPE;

Members

D3DTSS_COLOROP

The texture stage state is a texture color blending operation identified by one of the members of the D3DTEXTUREOP enumerated type. The default value for the first texture stage (stage zero) is D3DTOP_MODULATE, and for all other stages the default is D3DTOP_DISABLE.

D3DTSS_COLORARG1

The texture stage state is the first color argument for the stage, identified by a texture argument flag. The default argument is D3DTA_TEXTURE.

D3DTSS_COLORARG2

The texture stage state is the second color argument for the stage, identified by a texture argument flag. The default argument is D3DTA_CURRENT.

D3DTSS_ALPHAOP

The texture stage state is texture alpha blending operation identified by one of the members of the D3DTEXTUREOP enumerated type. The default value for the first texture stage (stage zero) is D3DTOP_SELECTARG1, and for all other stages the default is D3DTOP_DISABLE.

D3DTSS_ALPHAARG1

The texture stage state is the first alpha argument for the stage, identified by a texture argument flag. The default argument is D3DTA_TEXTURE. If no texture is set for this stage, the default argument is D3DTA_DIFFUSE.

D3DTSS_ALPHAARG2

The texture stage state is the second alpha argument for the stage, identified by a texture argument flag. The default argument is D3DTA_CURRENT.

D3DTSS_BUMPENVMAT00

The texture stage state is a D3DVALUE for the [0][0] coefficient in a bump mapping matrix. The default value is zero.

D3DTSS_BUMPENVMAT01

The texture stage state is a D3DVALUE for the [0][1] coefficient in a bump mapping matrix. The default value is 0.

D3DTSS_BUMPENVMAT10

The texture stage state is a D3DVALUE for the [1][0] coefficient in a bump mapping matrix. The default value is 0.

D3DTSS_BUMPENVMAT11

The texture stage state is a D3DVALUE for the [1][1] coefficient in a bump mapping matrix. The default value is 0.

D3DTSS_TEXCOORDINDEX

Index of the texture coordinate set to use with this texture stage. The default index is 0. Set this state to the zero-based index of the texture set at for each vertex that this texture stage will use. (You can specify up to eight sets of texture coordinates per vertex.) If a vertex does not include a set of texture coordinates at the specified index, the system defaults to using the u, v coordinates (0,0).

D3DTSS_ADDRESS

Member of the D3DTEXTUREADDRESS enumerated type. Selects the texture addressing method for both the u and v coordinates. The default is D3DTADDRESS_WRAP.

D3DTSS_ADDRESSU

Member of the D3DTEXTUREADDRESS enumerated type. Selects the texture addressing method for the u coordinate. The default is D3DTADDRESS_WRAP.

D3DTSS_ADDRESSV

Member of the D3DTEXTUREADDRESS enumerated type. Selects the texture addressing method for the v coordinate. The default value is D3DTADDRESS_WRAP.

D3DTSS_BORDERCOLOR

D3DCOLOR value that describes the color to be used for rasterizing texture coordinates outside the [0.0,1.0] range. The default color is 0x00000000.

D3DTSS_MAGFILTER

Member of the D3DTEXTUREMAGFILTER enumerated type that indicates the texture magnification filter to be used when rendering the texture onto primitives. The default value is D3DTFG_POINT.

D3DTSS_MINFILTER

Member of the D3DTEXTUREMINFILTER enumerated type that indicates the texture magnification filter to be used when rendering the texture onto primitives. The default value is D3DTFN_POINT.

D3DTSS_MIPFILTER

Member of the D3DTEXTUREMIPFILTER enumerated type that indicates the texture magnification filter to be used when rendering the texture onto primitives. The default value is D3DTFP_NONE.

D3DTSS_MIPMAPLODBIAS

Level of detail bias for mipmaps. Can be used to make textures appear more chunky or more blurred. The default value is 0.

D3DTSS_MAXMIPLEVEL

Maximum mipmap level-of-detail that the application will allow, expressed as an index from the top of the mipmap chain. (Lower values identify higher levels of detail within the mipmap chain). Zero, which is the default, indicates that all levels can be used. Non-zero values indicate that the application does not want to display mipmaps that have a higher level-of-detail than the mipmap at the specified index.

D3DTSS_MAXANISOTROPY

Maximum level of anisotropy. The default value is 1.

D3DTSS_BUMPENVLSCALE

D3DVALUE scale for bump map luminance. The default value is 0.

D3DTSS_BUMPENVLOFFSET

D3DVALUE offset for bump map luminance. The default value is 0.

RGBA color per vertex.

Graphics API's are allowing setting alpha per vertex.

ColorAlpha {
 exposedField MFColor color [] # [0,1]

 exposedField MFFloat alpha [] # [0,1]

}
Modeling Extensions

Lighting and Texturing support for PointSet and IndexedLineSet

The VRML 97 PointSet and IndexedLineSet didn't support lighting, by given authors the option of setting explicit vertex normals and vertex texture coordinates the primitives become more useful for rendering effects.

PointSet {

 exposedField SFNode color NULL

 exposedField SFNode coord NULL

 exposedField SFNode normal NULL # new

 exposedField SFNode texCoord NULL # new

}

IndexedLineSet {

 eventIn MFInt32 set_colorIndex

 eventIn MFInt32 set_coordIndex

 exposedField SFNode color NULL

 exposedField SFNode coord NULL

 exposedField SFNode normal
 NULL # new

 exposedField SFNode texCoord NULL # new

 field MFInt32 colorIndex []

 field SFBool colorPerVertex TRUE

 field MFInt32 coordIndex []

}

Issue: A question is also to make all fields of geometry fields exposed. This is very useful for online editing of scene graphs. Authors however should be warned that the continuos run-time animation of the prior VRML97 non-exposed fields might be very costly in some implementations (e.g. creaseAngle, Sphere.radius. etc).

NurbsSurface NurbsCurve

VRML 97 did not define potential infinite smooth shapes except the Cylinder Sphere and Cone nodes. NURBS primitives are allowing a much wider range of modeling with smooth shapes represented using a very compact mathematical description.

See blaxxun NURBS proposal

NurbsPositionInterpolator

Benefit:Enables compression of PositionInterpolator data.

See blaxxun NURBS proposal

Subdivision surfaces

Issue: what is the most common or best scheme

Other Extensions:

OrthographicCamera

The VRML 1.0 OrthographicCamera , needed in many application scenarios.

SFMatrix fieldtype

A field containing a transformation matrix. SFMatrices are written to file in row-major order as 16 floating point numbers separated by whitespace. For example, a matrix expressing a translation of 7.3 units along the X axis is written as:

1 0 0 0 0 1 0 0 0 0 1 0 7.3 0 0 1

MatrixTransform

MatrixTransform {
 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children []
 exposedField SFMatrix matrix
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
 field SFVec3f bboxCenter 0 0 0

 field SFVec3f bboxSize -1 -1 -1

}
The VRML 1.0 style of Transform using a Matrix.

Browser ensures correct transform and culling with matrices containing negative or zero scale matrix.

The effect on lighting with such matrices however is not specified.

2D Node set

Layering

TBD Analog MPEG View View3D node

or :

Polyline2D

NurbsCurve2D

Contour2D {

exposedField SFBool filled

exposedField MFNode curves

exposedField MFNode holes ## another contour

}

Composite Textures

Rendering of 2D or 3D scenes to a texture

Analogous MPEG-4 CompositeTexture2D CompositeTexture3D

DropSensor

Detect Desktop drop events to the 3D scene

See Paragraph node.

Raw Keyboard / Mouse / Joystick input

See Paragraph KeySensor node.

See blaxxun Contact event input extensions

Visibility Management

Nodes for providing visibility hints :

TBD: BspTree, Cell & Portal nodes etc.

Object-Object Collision detection

For advanced scripting and simulation n-n collision detection is needed.

The CollisionGroup nodes supports n-n collisiondetection among a set of CollisionObject children.

CollisionGroup {

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField SFNode avatar NULL
 exposedField MFNode children []
 exposedField SFBool collide TRUE
 exposedField SFBool firstOnly FALSE
 exposedField SFBool visibleOnly FALSE
 exposedField MFString method ["exact"]
 field SFVec3f bboxCenter 0 0 0

 field SFVec3f bboxSize -1 -1 -1

 eventOut MFNode collision

}

CollisionObject {

 eventIn MFNode addChildren

 eventIn MFNode removeChildren

 exposedField MFNode children []

 exposedField SFBool collide TRUE
 exposedField SFBool enabled TRUE
 exposedField SFBool convex FALSE
 exposedField SFVec3f bboxCenter 0 0 0

 exposedField SFVec3f bboxSize -1 -1 -1

 exposedField SFNode proxy NULL

 eventIn MFNode addIgnoredObjects

 eventIn MFNode removeIgnoredObjects

 exposedField MFNode ignoredObjects []

 exposedField SFVec3f
center

0 0 0

 exposedField SFRotation rotation
0 0 1 0

 exposedField SFVec3f
translation
0 0 0
 exposedField SFNode userObject NULL

 exposedField MFString userString []

 eventOut SFBool collision

}

CollisionEvent {

 exposedField SFTime collideTime
0
 exposedField SFNode a
NULL
 exposedField SFNode b
NULL

 exposedField MFNode pathA
[]
 exposedField MFNode pathB
[]
 exposedField MFFloat matrixA
[]
 exposedField MFFloat matrixB
[]
 exposedField MFFloat infoA
[]
 exposedField MFFloat infoB
[]
 exposedField SFVec3f bboxCenter 0 0 0

 exposedField SFVec3f bboxSize -1 -1 -1

 exposedField SFFloat distance 0

 exposedField MFFloat aMatrixPrev
[]
 exposedField SFFloat aTimePrev
0
 exposedField MFFloat bMatrixPrev
[]
 exposedField SFFloat bTimePrev
0
}

Quick description: the child nodes of CollisionGroup are all CollisionObject nodes. Once a CollsionObject is moved or changed CollisionGroup checks for collisions among childs. The pairs of all collisions are reported via the MFNode eventOut collide of CollisionGroup.

CollisionObject

children - the scene graph of the object, must contain one or more Geometry nodes.

proxy - an optional proxy geometry shape used as test geometry instead of children

collide TRUE: this object take part in the detection process, FALSE : object is ignored for detection process

enabled TRUE: if enclosing collision group is part of the rendered scene, children will be rendered as well, FALSE: children will not be rendered.

convex TRUE: user asserts that geometry shapes of proxy if present or children are convex shapes. The collision test algorithm might benefit from knowing that given geometry objects are convex. VRML Box Sphere, Cone Cylinder objects are convex by definition.

bboxSize, bboxCenter - bounding box for object in local coordinates, if box is empty bboxSize & bboxCenter will be automatically computed and updated on the first collision test.

ignoredObjects - optional list of CollisionObject handles which are contained in the parent group's children set.

Pairwise collision test is not done for objects contained in ignoredObjects.

center translation rotation - similar to a Transform describes the position and orientation of the object.

userObject userString - place to store application specific data, e.g. name and type of object.

CollisionGroup

children - contains list of CollisionObjects.

collide TRUE: collision detection process is enabled, FALSE : detection process not enable

method - selection of collision detection algorithm in order of decreasing preference

"exact" - geometry objects are tested by intersecting the triangles of the geometry

"convex" - convex geometry objects are tested, non convex objects by bounding boxes of the geometry

"bbox" - geometry objects are tested by intersecting the bounding boxes of the geometry

"ray" - only ray objects are tested against geometry objects

firstOnly TRUE: once a collision is found the search process is stopped

visibleOnly TRUE: only objects in the current view frustum are collision candidates

CollisionEvent is an helper node, returning detailed information about the collision

collideTime - the time the collision occurred

a - the top level CollideObject a

b - the top level CollideObject b

pathA - path to child object of a, last element of the path is a geometry node (IndexedFaceSet, Box etc), first element is a

matrixA - effective matrix transforming pathA[pathA.length-1] to the coordinate space of the CollisionGroup.

infoA - method dependent information:

for triangle method: 3 coordinates of a triangle and normal

for convex test a plane equation

for ray test point of intersection and parameter value along the ray

pathB - path to child object of B, last element of the path is a geometry node (IndexedFaceSet, Box etc)

matrixB -

infoB -

bboxCenter , bboxSize - the intersected bounding box of the lowest element of a and b

distance, estimated distance between a, b, (negative if penetration)

aMatrixPrev - the matrix of a at the previous simluation timestamp.

aTimePrev - the timestamp of aMatrixPrev

bMatrixPrev - the matrix of a at the previous simluation timestamp.

bTrimePrev

PseudoCode for collision detection

CollisionGroup::ComputeCollisions()

{

if (!collide) return;

m=method[0];

responses = new MFNode();

if (avatar) {

 update avatar.translation avatar.rotation in local coordinates (like ProximtySensor)

 update avatar.proxy with avatar geometry, e.g. box, cyclinder,

 convex hull of avatar at previous & current position

if (avatar.collide) {

hasCollision = false;

for (b=0; b<children.length;b++)

{

 if (!children[b].collide) continue;

 if (visibleOnly)

if (!isVisible(children[b]) continue;

 response = collisionTest(m,avatar, children[b]);

 if (response) {

response.a = avatar;

response.b = children[b];

hasCollision = true;

responses.append(response);

if (firstOnly) break;

 }

}

}

avatar.collision = hasCollision;

} else

for (a=0; a<children.length;a++) {

if (!children[a].collide) continue;

if (visibleOnly)

if (!isVisible(children[a])) continue;

hasCollision = false;

for (b=a+1; b<children.length;b++)

{

 if (!children[b].collide) continue;

 if (visibleOnly)

if (!isVisible(children[b]) continue;

 response = collisionTest(m,children[a], children[b]);

 if (response) {

response.a = children[a];

response.b = children[b];

hasCollision = true;

responses.append(response);

if (firstOnly) break;

 }

}

children[a].collision = hasCollision;

if (firstOnly && respones.length>0)

 break;

}

if (respones.length>0)

collision = respones;

}

collisionTest(String method,CollisionNode a, CollisionNode b)

{

if (a == b) return NULL;

if (a.ignoreObjects.contains(b)) return NULL;

if (b.ignoreObjects.contains(a)) return NULL;

as = a.proxy;

if (!as) as = a.children;

bs = b.proxy;

if (!bs) bs = b.children;

return collisionTest(m,as,a.getMatrix(),a.convex, bs,b.getMatrix(),b.convex);

}

collisionTest(String method, NodeField a, Matrix ma,bool convexa, NodeField b, Matrix mb, bool convexb)

{

response = NULL;

if (isGeometry(a) && isGeometry(b)) {

if (method=="bbox") {

if (bboxCollisionTest(a.getBBox(),ma,b.getBBOx(),mb) {

 response = new CollisionEvent();

 … fill in info

}

} else // exact case

if (geometryCollisionTest(method,a,ma,convexa,b,mb,convexb) {

 response = new CollisionEvent();

 … fill in info

}

return response;

}

if (isMFnodeOrGroup(a)) {

traverse a's scene graph and recursively call collisionTest with b,mb,convexb

update matrix ma / pathA in response as needed

return response;

}

if (isMFnodeOrGroup(b)) {

traverse b's scene graph and recursively call collisionTest with a,ma,convexa

update matrix mb / pathB in response as needed

return response;

}

}

Implementation Notes:

Collision Group can keep track of the relative movements of the CollisionObject nodes in the children field and compute and updated an internal geometric sort structure in order to prune many unnecessary pair wise tests for far away objects.

For an additional physics extension, the collision group might allow movements of child nodes only so far, no collision occurs.

Collision test is at least done once per rendering, after TimeSensor & input events have been processed.

Collision execution can be culled if none of the fields in CollisionGroup or direct CollisionObjects had been changed from the previous simulation timeStamp.

(Issue: what happens if a CollisionGroup contains animated / changing geometry, should resulting collision be detected as well ?)

Examples:

Detect if avatar moves through certain doors or into water area:

DEF C CollisionGroup {

avatar CollisionObject { userString "avatar" }

children [

 CollisionObject {

userString "door1"

translation 5 1 7 rotation 0 1 0 3.14

proxy Box { size 2 2 2 }

children Shape { … door geometry }

}

CollisionObject {

userString "door2"

translation -5 1 0 rotation 0 1 0 1

proxy Box { size 2 2 2 } # door area

children Shape { … door geometry }

}

CollisionObject {

userString "water"

translation 0 0 0

children Shape { … water geometry }

userData Anchor { url "other.wrl" }

}

]

}

DEF S Script {

eventIn MFNode collision

url "vrmlscript:

function collision(m) {

print('Avatar walked into ' +m[0].b.userString[0]);

action = m[0].b.userString[0];

if (action == 'door1') {

// do something

}

if (action == 'water') {

Browser.loadUrl(m[0].b.userData.url);

}

}

"

}

ROUTE c.collision TO S.collision

Improved Timing control

Problem: sequencing animations in VRML is currently an elaborate authoring step and requires scripting and good understanding, by extending the language with Meta time controllers authoring becomes easier.

Sketch of a SMIL like timing control:

SMIL concepts could be expressed in VRML using new nodes :

DEF MyAnimation Par {
children [

Seq {

children [

DEF animation1Timer TimeSensor { cycleInterval 20 }

DEF waiter1 TimeSensor { cycleInterval 3 }

DEF animation2Timer TimeSensor { }
]

}

Seq {

children [

DEF movie1 MovieTexture {}

DEF sound1 AudioClip {}

]

}
]
}
ROUTE someSensor.start TO MyAnimation.set_startTime

Seq and Par are controlling time dependent nodes, which have a set_startTime SFTime eventIn, and a possibility to compute a duration, or monitoring an isActive FALSE eventOut.

The set_startTime of child nodes are automatically managed by the Seq Par nodes.

Seq {

eventIn MFNode addChildren

eventIn MFNode removeChildren

exposedField SFTime startTime 0.0

exposedField SFInt32 loops 1

exposedField SFTime stopTime 0.0
exposedField MFNode children []

eventOut SFBool
isActive

eventOut SFTime
duration_changed

}

If the node isActive the children are played in-order, the set_startTime of node n is set, if node n-1 becomes inactive.

Seq itself gets into the state isActive FALSE if all childs are in state isActive = FALSE.

For startTime StopTime isActive see TimeSensor.

duration is computed from the sum of the duration of the children,

duration is 0 if the value can't be computed

duration is -1 for endless child animations. (bad condition)

Par {

eventIn MFNode addChildren

eventIn MFNode removeChildren

exposedField SFTime startTime 0.0

exposedField SFInt32 loops 1

exposedField SFTime stopTime 0.0
exposedField MFNode children []

eventOut SFBool
isActive

eventOut SFTime
duration_changed

}

If the node becomes isActive all of the children are played, i.e. the set_startTime of all nodes is set.

Par itself gets into the state isActive FALSE if all childs are in state isActive = FALSE.

duration is computed from the maximum of the duration of the children,

duration is 0 if the value can't be computed

duration is -1 for endless child animations. (bad condition)

Issues: should the meaning of initial absolute time values in VRML files be changed to be automatically adjust to the world start time ?

E.g.

TimeSensor {

startTime 2.0

}

Start the TimeSensor 2 seconds after the world is loaded ?

Should a field flag indicate world load relative times ?

TimeSensor {

startTime 2.0 WORLD_RELATIVE

}

Appendix A:

Built-in Interfaces

Abstract interfaces for which no 1:1 corresponding VRML Node class exists:

INTERFACE Node []

- root Interface for scene graph nodes INTERFACE Node []

INTERFACE Geometry : Node []
- root Interface for geometry nodes

INTERFACE Appearanced : Node []

INTERFACE Grouped : Node []

INTERFACE NameSpace []

-

INTERFACE Transformed []

INTERFACE Textured []

INTERFACE Timed [

exposedField SFBool loop FALSE

exposedField SFFloat speed 1.0

exposedField SFTime startTime 0

exposedField SFTime stopTime 0

eventOut SFTime duration_changed

eventOut SFBool isActive

]

INTERFACE Light [

exposedField SFFloat ambientIntensity 0

exposedField SFColor color 1 1 1

exposedField SFFloat intensity 1

exposedField SFBool on TRUE

]

INTERFACE Audible [

exposedField SFFloat intensity 1
]

INTERFACE Sensable [

exposedField SFBool enabled TRUE

eventOut SFBool isActive

]

INTERFACE Bindable [

eventIn SFBool set_bind

eventOut SFBool isBound

]

INTERFACE Loadable [

exposedField MFString url []

eventOut SFBool isLoaded
send TRUE whenever resource is loaded, FALSE if resource unloaded or not available

eventIn SFTime set_unload
request unloading of the resource at the given timestamp

eventIn SFTime set_load
request loading of the resource at the given timestamp

]

INTERFACE Interpolatable [

eventIn SFFloat set_fraction

]

Interface support for builtin nodes :

Nodes are supporting the Node interface

Geometry nodes are supporting the Geometry Interface

Group nodes are supporting Grouped Interface.

Texture nodes are supporting the Textured Interface.

Bindable nodes are supporting the Bindable Interface.

TimeSensor MovieTexture and Sound are supporting the Timed interface.

Transform is supporting the Group and Transformed Interfaces.

Inline AudioClip MovieTexture ImageTexture Background are supporting the Loadable interface

Transform Billboard TextureTransform are supporting the Transformed interface.

Sensors are supporting the Sensable interface

Interpolators are supporting the Interpolatable interface.

Lights are supporting the Light interface

API Member functions on interfaces:

eventIn's eventOut's exposedFields are directly exposed as properties with a corresponding name. eventIn's are write only.

Node :

String getName();

String getType();

boolean supportsInterface(interfaceId id);

Node getInterface(interfaceId id);

Transformed :

Matrix getMatrix();

NameSpace :

Node getNode(String name) - lookup node by name

boolean supportsNode(String nodeClassOrProtoName);

Node createNode(String nodeClassOrProtoName, StringArray fieldNames, FieldArray fieldValues)

Node createNode(String nodeClassOrProtoName, FieldArray fieldValues)

void setNode(String name, Node node)

interfaceId is an API binding specific type.

For simple scripting languages it could be string.

- 29 -
10/29/99

