Introduction to the Philosophy of Language

Winter 2004

Erich Rast

http://akira.ruc.dk/~erast/

Roskilde University
erast@ruc.dk
“To understand a proposition means to know what is the case, if it is true. (One can therefore understand it without knowing whether it is true or not.) One understands it if one understands its constituent parts.”

(Wittgenstein, *Tractatus Logico-Philosophicus*, 4.024)

Literature

- Quine (1956): *Quantifiers and Propositional Attitudes*
- Kripke (1979): *A Puzzle about Belief.*
Propositional Attitudes
What are Propositional Attitudes?

Here are some examples:

(1) Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge. (Frege 1892, 48)

(2) Ralph believes that Ortcutt is a spy. (Quine 1956, 180)

(3) John fears darkness.

(4) Lois Lane believes that Superman can fly.

(5) Lois Lane knows that Superman doesn’t exist.

(6) John thinks that Mary loves Peter.

(7) Lois Lane refuses to accept that Superman doesn’t exist.
What are Propositional Attitudes?

Here are some examples:

1. Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge. (Frege 1892, 48)
2. Ralph believes that Ortcutt is a spy. (Quine 1956, 180)
4. Lois Lane believes that Superman can fly.
5. Lois Lane knows that Superman doesn’t exist.
6. John thinks that Mary loves Peter.
7. Lois Lane refuses to accept that Superman doesn’t exist.

- Examples 2 & 4 involving »to believe« are canonical examples.
What are Propositional Attitudes?

Here are some examples:

1. Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge. (Frege 1892, 48)

2. Ralph believes that Ortcutt is a spy. (Quine 1956, 180)

4. Lois Lane believes that Superman can fly.

5. Lois Lane knows that Superman doesn’t exist.

6. John thinks that Mary loves Peter.

7. Lois Lane refuses to accept that Superman doesn’t exist.

- Examples 2 & 4 involving »to believe« are canonical examples.
- The other examples are more problematic or controversial.
What are Propositional Attitudes?

Here are some examples:

(1) Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge. (Frege 1892, 48)
(2) Ralph believes that Ortcutt is a spy. (Quine 1956, 180)
(3) John fears darkness.
(4) Lois Lane believes that Superman can fly.
(5) Lois Lane knows that Superman doesn’t exist.
(6) John thinks that Mary loves Peter.
(7) Lois Lane refuses to accept that Superman doesn’t exist.

- Examples 2 & 4 involving »to believe« are canonical examples.
- The other examples are more problematic or controversial.
- Why the term »propositional attitudes«?
What are Propositional Attitudes?

Here are some examples:

1. Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge. (Frege 1892, 48)
2. Ralph believes that Ortcutt is a spy. (Quine 1956, 180)
4. Lois Lane believes that Superman can fly.
5. Lois Lane knows that Superman doesn’t exist.
6. John thinks that Mary loves Peter.
7. Lois Lane refuses to accept that Superman doesn’t exist.

- The other examples are more problematic or controversial.
- Why the term »propositional attitudes«?
- The basic idea of propositional attitudes: The subject is in a certain attitude relation to the proposition expressed by the embedded sentence.
What are Propositional Attitudes?

Here are some examples:

1. Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge. (Frege 1892, 48)
2. Ralph believes that Ortcutt is a spy. (Quine 1956, 180)
4. Lois Lane believes that Superman can fly.
5. Lois Lane knows that Superman doesn’t exist.
6. John thinks that Mary loves Peter.
7. Lois Lane refuses to accept that Superman doesn’t exist.

- Examples 2 & 4 involving »to believe« are canonical examples.
- The other examples are more problematic or controversial.
- Why the term »propositional attitudes«?
- The basic idea of propositional attitudes: The subject is in a certain attitude relation to the proposition expressed by the embedded sentence.
- Questions: What kinds of relations? What is a proposition?
(8) Peter believes that Mary loves John.

\[
\text{believe}(x, y) \quad \text{Peter} \quad \text{the proposition that Mary loves John}
\]
(8) Peter believes that Mary loves John.

- Peter is in the belief relation to the proposition that Mary loves John.

\[\text{believe}(x, y) \]

\[Peter \quad \text{the proposition that Mary loves John} \]
(8) Peter believes that Mary loves John.

- Peter is in the belief relation to the proposition that is expressed by the embedded sentence »Mary loves John«.
- The relation is between an actual and an abstract object.
(8) Peter believes that Mary loves John.

\[\text{believe}(x, y) \]

- Peter is in the belief relation to the proposition that is expressed by the embedded sentence »Mary loves John«.
- The relation is between an actual and an abstract object.
- The meaning of a complete sentence is often called proposition.
(8) Peter believes that Mary loves John.

- Peter is in the belief relation to the proposition that is expressed by the embedded sentence »Mary loves John«.
- The relation is between an actual and an abstract object.
- The meaning of a complete sentence is often called proposition.
- Frege claimed that the odd Fregean meaning of a sentence was its sense, not its truth value.
(8) Peter believes that Mary loves John.

\[\text{Peter} \overset{\text{believe}(x, y)}{\rightarrow} \text{the proposition that Mary loves John} \]

- Peter is in the belief relation to the proposition that is expressed by the embedded sentence »Mary loves John«.
- The relation is between an actual and an abstract object.
- The meaning of a complete sentence is often called proposition.
- Frege claimed that the odd Fregean meaning of a sentence was its sense, not its truth value.
- A proposition is just the same as the Fregean sense of a sentence, except that it is often thought of in a more technical way, for example as a set of possible worlds.
Referential Opacity
What is Referential Opacity?

(9) Lois Lane believes that Superman can fly.
(10) Lois Lane doesn’t believes that Clark Kent can fly.
(11) Superman can fly.

\[\text{believe}(x, y) \]

Lois

the proposition that Superman can fly
What is Referential Opacity?

(9) Lois Lane believes that Superman can fly.
(10) Lois Lane doesn’t believes that Clark Kent can fly.
(11) Superman can fly.

- As we all know, Superman is Clark Kent.
What is Referential Opacity?

(9) Lois Lane believes that Superman can fly.
(10) Lois Lane doesn’t believes that Clark Kent can fly.
(11) Superman can fly.

As we all know, Superman is Clark Kent.
So »Superman« and »Clark Kent« are co-referential.
What is Referential Opacity?

(9) Lois Lane believes that Superman can fly.
(10) Lois Lane doesn’t believes that Clark Kent can fly.
(11) Superman can fly.

- As we all know, Superman is Clark Kent.
- So »Superman« and »Clark Kent« are co-referential.
- We can substitute »Clark Kent« for »Superman« in 11 **salva veritate** (=without changing the truth value).
What is Referential Opacity?

(9) Lois Lane believes that Superman can fly.
(10) Lois Lane doesn’t believes that Clark Kent can fly.
(11) Superman can fly.

\[\text{believe}(x, y) \]

\[Lois \rightarrow \text{the proposition that Superman can fly} \]

- As we all know, Superman is Clark Kent.
- So »Superman« and »Clark Kent« are co-referential.
- We can substitute »Clark Kent« for »Superman« in 11 \textit{salva veritate} (=without changing the truth value).
- But we cannot substitute »Clark Kent« with »Superman« in 9 or 10 \textit{salva veritate}.
What is Referential Opacity?

(9) Lois Lane believes that Superman can fly.
(10) Lois Lane doesn’t believes that Clark Kent can fly.
(11) Superman can fly.

What is Referential Opacity?

As we all know, Superman is Clark Kent.

So »Superman« and »Clark Kent« are co-referential.

We can substitute »Clark Kent« for »Superman« in 11 *salva veritate* (=without changing the truth value).

But we cannot substitute »Clark Kent« with »Superman« in 9 or 10 *salva veritate*.

The belief ascription is **referentially opaque**.
What is Referential Opacity?

(9) Lois Lane believes that Superman can fly.
(10) Lois Lane doesn’t believes that Clark Kent can fly.
(11) Superman can fly.

- As we all know, Superman is Clark Kent.
- So »Superman« and »Clark Kent« are co-referential.
- We can substitute »Clark Kent« for »Superman« in 11 salva veritate (=without changing the truth value).
- But we cannot substitute »Clark Kent« with »Superman« in 9 or 10 salva veritate.
- The belief ascription is referentially opaque.
- More precisely, the reading of the ascription is opaque. It can also be read as being referentially transparent, allowing substitution.
What is Referential Opacity?

(9) Lois Lane believes that Superman can fly.
(10) Lois Lane doesn’t believes that Clark Kent can fly.
(11) Superman can fly.

As we all know, Superman is Clark Kent.

So »Superman« and »Clark Kent« are co-referential.

We can substitute »Clark Kent« for »Superman« in (11) \textit{salva veritate} (=without changing the truth value).

But we cannot substitute »Clark Kent« with »Superman« in (9) or (10) \textit{salva veritate}.

The belief ascription is referentially opaque.

More precisely, the reading of the ascription is opaque. It can also be read as being referentially transparent, allowing substitution.

Sometimes the opaque reading is called \textit{de dicto} and the transparent reading \textit{de re}.
More Examples

(12) Erich Rast believes that Ruth Barcan found the Barcan Formula.
(13) Erich Rast doesn’t believe that Ruth Marcus found the Barcan Formula.
(14) Ruth Barcan found the Barcan formula.
(15) Ruth Marcus found the Barcan formula.
More Examples

(12) Erich Rast believes that Ruth Barcan found the Barcan Formula.
(13) Erich Rast doesn’t believe that Ruth Marcus found the Barcan Formula.
(14) Ruth Barcan found the Barcan formula.
(15) Ruth Marcus found the Barcan formula.

- It doesn’t matter whether the referent is fictional or real. Referential opacity can arise with actual referents.
More Examples

(12) Erich Rast believes that Ruth Barcan found the Barcan Formula.
(13) Erich Rast doesn’t believe that Ruth Marcus found the Barcan Formula.
(14) Ruth Barcan found the Barcan formula.
(15) Ruth Marcus found the Barcan formula.

- It doesn't matter whether the referent is fictional or real. Referential opacity can arise with actual referents.
- Question: Can two embedded sentences with co-referential proper names express different propositions?
More Examples

(12) Erich Rast believes that Ruth Barcan found the Barcan Formula.
(13) Erich Rast doesn’t believe that Ruth Marcus found the Barcan Formula.
(14) Ruth Barcan found the Barcan formula.
(15) Ruth Marcus found the Barcan formula.

- It doesn’t matter whether the referent is fictional or real. Referential opacity can arise with actual referents.
- Question: Can two embedded sentences with co-referential proper names express different propositions?
- Answer: That depends on what propositions are supposed to be.
More Examples

(12) Erich Rast believes that Ruth Barcan found the Barcan Formula.
(13) Erich Rast doesn’t believe that Ruth Marcus found the Barcan Formula.
(14) Ruth Barcan found the Barcan formula.
(15) Ruth Marcus found the Barcan formula.

- It doesn’t matter whether the referent is fictional or real. Referential opacity can arise with actual referents.
- Question: Can two embedded sentences with co-referential proper names express different propositions?
- Answer: That depends on what propositions are supposed to be.
- Moral: You should avoid talk about propositions without giving them an exact definition or exact identity conditions.
Views on Referential Opacity

(16) Lois Lane believes that Superman can fly.
(17) Lois Lane believes that Clark Kent can’t fly.

Two main positions:
(16) Lois Lane believes that Superman can fly.
(17) Lois Lane believes that Clark Kent can’t fly.

Two main positions:

- **Semantic View**
 Two attitude ascriptions with an embedded proper name can have different truth values if the proper names are co-referential.
Views on Referential Opacity

(16) Lois Lane believes that Superman can fly.
(17) Lois Lane believes that Clark Kent can’t fly.

Two main positions:

- **Semantic View**
 Two attitude ascriptions with an embedded proper name can have different truth values if the proper names are co-referential.

- **Pragmatic View**
 Two attitude ascriptions with an embedded proper name have the same truth values, if the proper names are co-referential, but may differ pragmatically, for example in their cognitive value for speakers/hearers.
(16) Lois Lane believes that Superman can fly.
(17) Lois Lane believes that Clark Kent can’t fly.

Two main positions:

- **Semantic View**
 Two attitude ascriptions with an embedded proper name can have different truth values if the proper names are co-referential.

- **Pragmatic View**
 Two attitude ascriptions with an embedded proper name have the same truth values, if the proper names are co-referential, but may differ pragmatically, for example in their cognitive value for speakers/hearers.

The semantic position is common, whereas the pragmatic view has rarely been propagated (e.g. by Salmon (1986); McKay (1981)). If referential opacity is considered a pragmatic phenomenon, it poses no problems for a semantic analysis.
(16) Lois Lane believes that Superman can fly.
(17) Lois Lane believes that Clark Kent can’t fly.

Two main positions:

- **Semantic View**
 Two attitude ascriptions with an embedded proper name can have different truth values if the proper names are co-referential.

- **Pragmatic View**
 Two attitude ascriptions with an embedded proper name have the same truth values, if the proper names are co-referential, but may differ pragmatically, for example in their cognitive value for speakers/hearers.

The semantic position is common, whereas the pragmatic view has rarely been propagated (e.g. by Salmon (1986); McKay (1981)). If referential opacity is considered a pragmatic phenomenon, it poses no problems for a semantic analysis. How could it?
Views on Referential Opacity

(16) Lois Lane believes that Superman can fly.
(17) Lois Lane believes that Clark Kent can’t fly.

Two main positions:

- **Semantic View**
 Two attitude ascriptions with an embedded proper name can have different truth values if the proper names are co-referential.

- **Pragmatic View**
 Two attitude ascriptions with an embedded proper name have the same truth values, if the proper names are co-referential, but may differ pragmatically, for example in their cognitive value for speakers/hearers.

The semantic position is common, whereas the pragmatic view has rarely been propagated (e.g. by Salmon (1986); McKay (1981)). If referential opacity is considered a pragmatic phenomenon, it poses no problems for a semantic analysis. How could it? But of course the problem will reappear once you try to get a formal grasp on the pragmatics of believe ascriptions.
Attitudes in Modal Logic
Modal logics are often used for modelling propositional attitudes.

(18) Ralph believes that Ortcutt is a spy.

Simplified:

\[
\text{believe}(x, y) \quad \{w | \text{Ortcutt is a spy in } w\}
\]

the set of all worlds in which Ortcutt is a spy

How it really works:

(19) \(M, g, w \models B_a P(b)\)

\[\uparrow\]

(20) In all \(w'\) such that \(wR_a w'\): \(M, g, w' \models P(b)\)

\[\uparrow\]

(21) In all \(w'\) such that \(wR_a w'\): \(T_g(b) \in I(P, w')\)
Modal Logic Reminder
Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.
Modal Logic Reminder

- Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.

- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.

Introduction to the Philosophy of Language
Propositional Attitudes and Referential Opacity - p. 12/23
Modal Logic Reminder

- Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.

- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.

- So R_a can be a relation between two worlds $w, w' \in W$ such that
Modal Logic Reminder

- Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.
- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.
- So R_a can be a relation between two worlds $w, w' \in W$ such that:
 - w is the world we are evaluating at, e.g. the actual world
Modal Logic Reminder

- Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.
- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.
- So R_a can be a relation between two worlds $w, w' \in W$ such that:
 - w is the world we are evaluating at, e.g. the actual world
 - w' is a world that is compatible with what Ralph (symbolized by the index a) believes in w
Modal Logic Reminder

- Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.
- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.
- So R_a can be a relation between two worlds $w, w' \in W$ such that
 - w is the world we are evaluating at, e.g. the actual world
 - w' is a world that is compatible with what Ralph (symbolized by the index a) believes in w
- B_a is an operator like \square.
Modal Logic Reminder

- Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.
- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.
- So R_a can be a relation between two worlds $w, w' \in W$ such that
 - w is the world we are evaluating at, e.g. the actual world
 - w' is a world that is compatible with what Ralph (symbolized by the index a) believes in w
- B_a is an operator like \Box.
- So $M, g, w \models B_a P(b)$ informally means something like $P(b)$ is true in all worlds that are compatible with what Ralph believes in w.

Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.

- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.
- So R_a can be a relation between two worlds $w, w' \in W$ such that
 - w is the world we are evaluating at, e.g. the actual world
 - w' is a world that is compatible with what Ralph (symbolized by the index a) believes in w
- B_a is an operator like \Box.
- So $M, g, w \models B_a P(b)$ informally means something like $P(b)$ is true in all worlds that are compatible with what Ralph believes in w.

Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.
Modal Logic Reminder

- Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.

- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.

- So R_a can be a relation between two worlds $w, w' \in W$ such that
 - w is the world we are evaluating at, e.g. the actual world
 - w' is a world that is compatible with what Ralph (symbolized by the index a) believes in w

- B_a is an operator like \Box.

- So $M, g, w \vDash B_a P(b)$ informally means something like $P(b)$ is true in all worlds that are compatible with what Ralph believes in w.

- $[i]$ and $\langle i \rangle$ are also often used as a notation for operators corresponding to \Box and \Diamond with accessibility relation R_i in multi-modal systems. We’ll stick to B_i for belief and \Box for alethic modality.
Modal Logic Reminder

- Recall: A model $M = \langle W, R, D, I \rangle$ is a Kripke model for a first-order modal logic consisting of a set of possible worlds W, an accessibility relation R, the domain D, and interpretation function I.

- A multi-modal Kripke model is just the same, except that R is a set of binary relations R_i between possible worlds, each of those relations with an index i.

- So R_a can be a relation between two worlds $w, w' \in W$ such that
 - w is the world we are evaluating at, e.g. the actual world
 - w' is a world that is compatible with what Ralph (symbolized by the index a) believes in w

- B_α is an operator like \Box.

- So $M, g, w \models B_\alpha P(b)$ informally means something like $P(b)$ is true in all worlds that are compatible with what Ralph believes in w.

- $[i]$ and $\langle i \rangle$ are also often used as a notation for operators corresponding to \Box and \Diamond with accessibility relation R_i in multi-modal systems. We’ll stick to B_i for belief and \Box for alethic modality.

- Limitations: We have a fixed set of agents represented as indices. By default, it’s not possible to quantify over agents, as this would require us to perform advanced set theoretic operations over various relations R_i, R_j, \ldots
A Problem With Doxastic Modalities

In normal modal logic, referential opacity cannot be encoded using ordinary constants. Ordinary constants are rigid with respect to any modality. Suppose \(M = \langle W, R, D, I \rangle \) such that \(I(c, w) = I(c, w') \) for any constant \(c \) and \(w, w' \in W \). Let \(a, b \) be constants that denote the same object, i.e. \(I(a, w) = I(b, w) \).

\[
\begin{align*}
(22) & \quad M, g, w \models B_P(a) \\
& \quad \upharpoonright \text{rule for belief operator} \\
(23) & \quad \text{in all } w' \text{ such that } wRw': M, g, w' \models P(a) \\
& \quad \upharpoonright \text{rules for predicates and constants} \\
(24) & \quad I(a, w') \in I(P, w') \\
& \quad \upharpoonright \text{by rigidity} \\
(25) & \quad I(a, w) \in I(P, w') \\
& \quad \upharpoonright \text{because } I(a, w) = I(b, w) \\
(26) & \quad I(b, w) \in I(P, w') \\
& \quad \upharpoonright \text{like above, but in reverse direction} \\
(27) & \quad M, g, w \models B_P(b)
\end{align*}
\]
A Possible Solution?

Co-referential constants are substitutable within the scope of doxastic modalities because they are rigid no matter which kind of modality is involved. Make them non-rigid in respect to doxastic modalities and the problem seems to be solved.

We can, it seems, still define rigidity for alethic modalities:

- Rigidity in respect of \Box: For any constant c, any w_0, and all w_1, w_2 such that $w_0 R_{\Box} w_1$ and $w_0 R_{\Box} w_2$: $I(c, w_1) = I(c, w_2)$.

- Non-rigidity in respect of \mathcal{B}: For any constant c, any w_0, and doxastic modality i, there can be two worlds w_1, w_2 such that $w_0 R_i w_1$ and $w_0 R_i w_2$ and $I(c, w_1) \neq I(c, w_2)$.

An example:

\[
\begin{align*}
 w_0 R_{\Box} w_0 & \quad I(a, w_0) = a \\
 w_0 R_{\Box} w_1 & \quad I(a, w_1) = a \\
 w_0 R_{\Box} w_2 & \quad I(a, w_2) = a \\
 w_0 R_{\Box} w_3 & \\
 w_0 R_a w_3 & \quad I(a, w_3) = a \\
 w_0 R_a w_4 & \quad I(a, w_4) = b
\end{align*}
\]
Co-referential constants are substitutable within the scope of doxastic modalities because they are rigid no matter which kind of modality is involved. Make them non-rigid in respect to doxastic modalities and the problem seems to be solved.

We can, it seems, still define rigidity for alethic modalities:

- **Rigidity in respect of \Box:** For any constant c, any w_0, and all w_1, w_2 such that $w_0 R \Box w_1$ and $w_0 R \Box w_2$: $I(c, w_1) = I(c, w_2)$.
- **Non-rigidity in respect of \mathcal{B}:** For any constant c, any w_0, and doxastic modality i, there can be two worlds w_1, w_2 such that $w_0 R_i w_1$ and $w_0 R_i w_2$ and $I(c, w_1) \neq I(c, w_2)$.

An example:

\[
\begin{array}{c|c}
 w_0 R \Box w_0 & I(a, w_0) = a \\
 w_0 R \Box w_1 & I(a, w_1) = a \\
 w_0 R \Box w_2 & I(a, w_2) = a \\
 w_0 R \Box w_3 & I(a, w_3) = a \\
 w_0 R_i w_3 & I(a, w_4) = b \\
\end{array}
\]

- Why doesn’t this work?
The Underlying Problem
The Underlying Problem

- The proposed solution only works if $R\square$ doesn’t grant access to all worlds that are compatible with any agent’s belief worlds.
The Underlying Problem

- The proposed solution only works if $R\Box$ doesn’t grant access to all worlds that are compatible with any agent’s belief worlds.
- In other words, there are some worlds that are reachable by some doxastic modality R_B but not by the $R\Box$ relation.
The Underlying Problem

- The proposed solution only works if R_\square doesn’t grant access to all worlds that are compatible with any agent’s belief worlds.
- In other words, there are some worlds that are reachable by some doxastic modality R_B but not by the R_\square relation.
- Formally: $\neg \forall w_0, w_1 (w_0 R_B w_1 \rightarrow w_0 R_\square w_1)$.
The Underlying Problem

- The proposed solution only works if $R_{□}$ doesn’t grant access to all worlds that are compatible with any agent’s belief worlds.
- In other words, there are some worlds that are reachable by some doxastic modality R_B but not by the $R_{□}$ relation.
- Formally: $\neg \forall w_0, w_1 (w_0 R_B w_1 \rightarrow w_0 R_{□} w_1)$.
- Let’s call the set of worlds that are reachable by a doxastic accessibility relation W_B and the set of worlds that are reachable by an alethic accessibility relation $W_{□}$.
The Underlying Problem

- The proposed solution only works if $R\Box$ doesn’t grant access to all worlds that are compatible with any agent’s belief worlds.
- In other words, there are some worlds that are reachable by some doxastic modality R_B but not by the $R\Box$ relation.
- Formally: $\neg\forall w_0, w_1 (w_0 R_B w_1 \rightarrow w_0 R\Box w_1)$.
- Let’s call the set of worlds that are reachable by a doxastic accessibility relation W_B and the set of worlds that are reachable by an alethic accessibility relation $W\Box$.
- Then the above condition implies that W_B is not a subset of $W\Box$.
The Underlying Problem

- The proposed solution only works if R_\Box doesn’t grant access to all worlds that are compatible with any agent’s belief worlds.
- In other words, there are some worlds that are reachable by some doxastic modality R_B but not by the R_\Box relation.
- Formally: $\neg\forall w_0, w_1 (w_0 R_B w_1 \rightarrow w_0 R_\Box w_1)$.
- Let’s call the set of worlds that are reachable by a doxastic accessibility relation W_B and the set of worlds that are reachable by an alethic accessibility relation W_\Box.
- Then the above condition implies that W_B is not a subset of W_\Box.
- So some belief worlds are elements in W_B but not in W_\Box. Example: w_4 on the last slide.
The Underlying Problem

- The proposed solution only works if R_{\Box} doesn’t grant access to all worlds that are compatible with any agent’s belief worlds.
- In other words, there are some worlds that are reachable by some doxastic modality R_B but not by the R_{\Box} relation.
- Formally: $\neg \forall w_0, w_1 (w_0 R_B w_1 \rightarrow w_0 R_{\Box} w_1)$.
- Let’s call the set of worlds that are reachable by a doxastic accessibility relation W_B and the set of worlds that are reachable by an alethic accessibility relation W_{\Box}.
- Then the above condition implies that W_B is not a subset of W_{\Box}.
- So some belief worlds are elements in W_B but not in W_{\Box}. Example: w_4 on the last slide.
- But then, whatever statements this world makes true are impossibly true. ($\neg \Diamond \phi$ is true in any such world.)
The Underlying Problem

- The proposed solution only works if $R\Box$ doesn't grant access to all worlds that are compatible with any agent’s belief worlds.
- In other words, there are some worlds that are reachable by some doxastic modality R_B but not by the $R\Box$ relation.
- Formally: $\neg\forall w_0, w_1 (w_0 R_B w_1 \rightarrow w_0 R\Box w_1)$.
- Let’s call the set of worlds that are reachable by a doxastic accessibility relation W_B and the set of worlds that are reachable by an alethic accessibility relation $W\Box$.
- Then the above condition implies that W_B is not a subset of $W\Box$.
- So some belief worlds are elements in W_B but not in $W\Box$. Example: w_4 on the last slide.
- But then, whatever statements this world makes true are impossibly true. ($\neg\Diamond \phi$ is true in any such world.)
- This is not very plausible.
The Underlying Problem

- The proposed solution only works if $R\Box$ doesn’t grant access to all worlds that are compatible with any agent’s belief worlds.
- In other words, there are some worlds that are reachable by some doxastic modality R_B but not by the $R\Box$ relation.
- Formally: $\neg\forall w_0,w_1 (w_0 R_B w_1 \rightarrow w_0 R\Box w_1)$.
- Let’s call the set of worlds that are reachable by a doxastic accessibility relation W_B and the set of worlds that are reachable by an alethic accessibility relation $W\Box$.
- Then the above condition implies that W_B is not a subset of $W\Box$.
- So some belief worlds are elements in W_B but not in $W\Box$. Example: w_4 on the last slide.
- But then, whatever statements this world makes true are impossibly true. ($\neg\Diamond \phi$ is true in any such world.)
- This is not very plausible.
- At least it’s not desirable for solving referential opacity, since it is unreasonable to claim that an agent believes something impossible when he just doesn’t know that two names are co-referential.
More Problems

Overgeneration

As a consequence of the following properties of normal modal logics more formulas are valid than might be desired.

Omniscience
If A is provable, then it is also known or believed. So every logical tautology is automatically believed. The agent is logically omniscient. Necessitation rule: If $\vdash A$ then $\vdash \Box A$.

Distribution of \land and \rightarrow
If an agent believes/knows that $A \land B$, he also believes/knows that A and believes/knows that B. This is sometimes considered inplausible. In K $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$ (K-Rule) and $\Box(p \land q) \rightarrow (\Box p \land \Box q)$ are valid, but not the disjunctive version.
Even More Problems

Undergeneration

As a result of the following properties of normal modal logics, less formulas are valid than might be desired.

Substitutability of Rigid Constants

In a standard treatment, constants are rigid and therefore substitutable with co-referential constants in any context. Making terms non-rigid in respect to one modality but rigid with respect to another is difficult, not standard, and not trivial.

Inner-world Substitutability

In a normal first-order modal logic, singular terms that are co-referential in one world are substitutable for each other in relation to this world. This has been considered problematic in connection with essential indexicals. If \(T_g(t_1, w) = T_g(t_2, w) \), then \(M, g, w \models A \iff A[t_1/t_2] \).
The approaches to deal with propositional attitudes can be classified according to several criterias.

- **Syntactic Approach**: quote a formula or linguistic entities themselves
 - **Direct Quotation**: use a quoting operator in the formal language itself: \(B(a, \lnot P(b)) \) “Quine-corners”. In combination with strong reflection principles, inconsistencies can arise (Montague’s theorem), but there are ways to deal with them. Lit. Carnap (1947), Davidson (1969), Wessel (1998), Bolander (2003)
 - **Indirect Quotation**: refer to linguistic material in another language, e.g. the natural language that is analysed, or syntactic material that is represented in parallel with the actual formulas. Lit. Token-dependency Semantics, Dahllöf (2002)

- **Non-syntactic Approach**: modify modal logics, use other logics
 - **Impossible Possible Worlds**: add impossible worlds and syntactic assignments. Lit. Hintikka (1967, 1979)
 - **Situation Semantics**: use fine-grained situations instead of possible worlds. Lit. Barwise & Perry (1983)
Kripke’s Puzzle
Kripke’s Puzzle

Living in France, Pierre comes to believe that London is pretty. Later, when he is living in London, he comes to believe that London is ugly, but doesn’t realize that »Londres« and »London« denote the same city.

(28) Pierre: Londres est jolie
 ➟ Pierre believes that London is pretty.

(29) Pierre: London is ugly.
 ➟ Pierre believes that London is ugly.

Disquotation

The puzzle: We conclude that Pierre has contradictory beliefs, yet he seems to be a perfectly rational agent. Pierre hasn’t changed his beliefs. Does he believe that London is pretty or doesn’t he believe that London is pretty?
Principle of Disquotation

For an English sentence p:

“If a normal English speaker, on reflection, sincerely assents to ‘p’, then he believes that p.” (Kripke 1979, 112/113)
Principle of Disquotation

For an English sentence p:

“If a normal English speaker, on reflection, sincerely assents to ‘p’, then he believes that p.” (Kripke 1979, 112/113)

- The principle is language-dependent.
Principle of Disquotation

For an English sentence p:

“If a normal English speaker, on reflection, sincerely assents to ‘p’, then he believes that p.” (Kripke 1979, 112/113)

- The principle is language-dependent.
- The principle assumes that the speaker is sincere.
Principle of Disquotation

For an English sentence p:

“If a normal English speaker, on reflection, sincerely assents to ‘p’, then he believes that p.” (Kripke 1979, 112/113)

- The principle is language-dependent.
- The principle assumes that the speaker is sincere.
- The principle assumes that the speaker reflects what he says. (He is not just babbling like an idiot or parrot.)
Principle of Disquotation

For an English sentence p:

“If a normal English speaker, on reflection, sincerely assents to ‘p’, then he believes that p.” (Kripke 1979, 112/113)

- The principle is language-dependend.
- The principle assumes that the speaker is sincere.
- The principle assumes that the speaker reflects what he says. (He is not just babbling like an idiot or parrot.)
- Kripke’s puzzle assumes two disquotational principles, one for French and one for English.
Principle of Translation

For languages:

“If a sentence of one language expresses a truth in that language, then any translation of it into any other language also expresses a truth (in that other language).” (Kripke 1979, 112/113)
Principle of Translation

For languages:

“If a sentence of one language expresses a truth in that language, then any translation of it into any other language also expresses a truth (in that other language).” (Kripke 1979, 112/113)

- The principle assumes that it is possible to translate from one to another language.
Principle of Translation

For languages:

“If a sentence of one language expresses a truth in that language, then any translation of it into any other language also expresses a truth (in that other language).” (Kripke 1979, 112/113)

- The principle assumes that it is possible to translate from one to another language.
- This may be critizised, but this critique would be external to the argument.
Principle of Translation

For languages:

“If a sentence of one language expresses a truth in that language, then any translation of it into any other language also expresses a truth (in that other language).” (Kripke 1979, 112/113)

- The principle assumes that it is possible to translate from one to another language.
- This may be criticized, but this critique would be external to the argument.
- Philosophical quiddities aside, »Londres est jolie« and »London is pretty« are clearly translations of each other.
Principle of Translation

For languages:

“If a sentence of one language expresses a truth in that language, then any translation of it into any other language also expresses a truth (in that other language).” (Kripke 1979, 112/113)

- The principle assumes that it is possible to translate from one to another language.
- This may be criticized, but this critique would be external to the argument.
- Philosophical quiddities aside, »Londres est jolie« and »London is pretty« are clearly translations of each other.
- Question: Does this principle also apply to believe sentences with referentially opaque reading?
Some Questions About Belief Ascriptions

- What are the criteria for...

- In what way does a sentence express an attitude of the speaker?
Some Questions About Belief Ascriptions

• What are the criteria for...
 ✦ ...truth or falsity of belief ascriptions?

• In what way does a sentence express an attitude of the speaker?
Some Questions About Belief Ascriptions

- What are the criteria for...
 - ... truth or falsity of belief ascriptions?
 - ... acceptance or rejection of belief ascriptions

- In what way does a sentence express an attitude of the speaker?
Some Questions About Belief Ascriptions

● What are the criteria for . . .
 ✦ . . . truth or falsity of belief ascriptions?
 ✦ . . . acceptance or rejection of belief ascriptions
 ■ . . . by the linguistic community?

● In what way does a sentence express an attitude of the speaker?
Some Questions About Belief Ascriptions

- What are the criteria for...
 - ... truth or falsity of belief ascriptions?
 - ... acceptance or rejection of belief ascriptions
 - ... by the linguistic community?
 - ... by the speaker?

- In what way does a sentence express an attitude of the speaker?
Some Questions About Belief Ascriptions

- What are the criteria for...
 - ...truth or falsity of belief ascriptions?
 - ...acceptance or rejection of belief ascriptions
 - ...by the linguistic community?
 - ...by the speaker?
 - ...by the believer?

- In what way does a sentence express an attitude of the speaker?
Some Questions About Belief Ascriptions

• What are the criteria for...
 ❖ ...truth or falsity of belief ascriptions?
 ❖ ...acceptance or rejection of belief ascriptions
 ■ ...by the linguistic community?
 ■ ...by the speaker?
 ■ ...by the believer?

• In what way does a sentence express an attitude of the speaker?
Some Questions About Belief Ascriptions

- What are the criteria for...
 - ... truth or falsity of belief ascriptions?
 - ... acceptance or rejection of belief ascriptions
 - ... by the linguistic community?
 - ... by the speaker?
 - ... by the believer?
- In what way does a sentence express an attitude of the speaker?