Sense and Reference

“To understand a proposition means to know what is the case, if it is true. (One can therefore understand it without knowing whether it is true or not.) One understands it if one understands its constituent parts.”

(Wittgenstein, Tractatus Logico-Philosophicus, 4.024)

Literature

- Frege (1892): On Sense and Reference.
- Chapter 1 and 2 of Lycan (2000)
Background: Frege

Gottlob Frege (1848-1925): Background
Gottlob Frege (1848-1925): Background

- Frege is primarily interested in the foundations of mathematics.
Gottlob Frege (1848-1925): Background

- Frege is primarily interested in the foundations of mathematics.
- Frege often considers natural language imperfect.
Background: Frege

Gottlob Frege (1848-1925): Background

- Frege is primarily interested in the foundations of mathematics.
- Frege often considers natural language imperfect.
- He regards his Begriffsschrift as an ideal language.
Gottlob Frege (1848-1925): Background

- Frege is primarily interested in the foundations of mathematics.
- Frege often considers natural language imperfect.
- He regards his Begriffsschrift as an ideal language.
- In his late life, Frege becomes embittered.
Background: Frege

Gottlob Frege (1848-1925): Background

- Frege is primarily interested in the foundations of mathematics.
- Frege often considers natural language imperfect.
- He regards his Begriffsschrift as an ideal language.
- In his late life, Frege becomes embittered.
 - Russell finds a famous paradox (Russell's Paradox) in Frege's foundation of mathematics just shortly before publication of the second volume (1903).
Background: Frege

Gottlob Frege (1848-1925): Background

- Frege is primarily interested in the foundations of mathematics.
- Frege often considers natural language imperfect.
- He regards his Begriffsschrift as an ideal language.
- In his late life, Frege becomes embittered.
 - Russell finds a famous paradox (Russell’s Paradox) in Frege’s foundation of mathematics just shortly before publication of the second volume (1903).
 - The intended 3rd and 4th volume of the *Grundgesetze der Arithmetik* are never published.
Gottlob Frege (1848-1925): Background

- Frege is primarily interested in the foundations of mathematics.
- Frege often considers natural language imperfect.
- He regards his Begriffsschrift as an ideal language.
- In his late life, Frege becomes embittered.
 - Russell finds a famous paradox (Russell’s Paradox) in Frege’s foundation of mathematics just shortly before publication of the second volume (1903).
 - The intended 3rd and 4th volume of the *Grundgesetze der Arithmetik* are never published.
 - Frege is way ahead of his time. Only much later the significance of the sense—reference distinction will be recognized by philosophers and linguists (see e.g. Church, cf. Russell correspondence).
Gottlob Frege (1848-1925): Background

- Frege is primarily interested in the foundations of mathematics.
- Frege often considers natural language imperfect.
- He regards his Begriffsschrift as an ideal language.
- In his late life, Frege becomes embittered.
 - Russell finds a famous paradox (Russell’s Paradox) in Frege’s foundation of mathematics just shortly before publication of the second volume (1903).
 - The intended 3rd and 4th volume of the *Grundgesetze der Arithmetik* are never published.
 - Frege is way ahead of his time. Only much later the significance of the sense—reference distinction will be recognized by philosophers and linguists (see e.g. Church, cf. Russell correspondence).
 - The notation of the Begriffsschrift doesn’t become very popular.
The Sense–Reference Triangle

One Version

expression \rightarrow \text{sense} \rightarrow \text{determines} \rightarrow \text{referent}
The Sense–Reference Triangle

One Version

expression ————> referent

sense

has

determines

Another Version

speaker ————> referent

sense

grasps

determines

The Sense–Reference Triangle

One Version

sense

expression → referent

? has determines

Another Version

sense

speaker → referent

? grasps determines
What Can Senses Do? (I)

Two different senses can pick out the same object.

\[\text{sense}_1 \rightarrow \text{referent} \]

\[\text{sense}_2 \]

But one sense cannot pick out two objects.

\[\text{referent}_1 \]

\[\text{referent}_2 \]
What Can Senses Do? (II)

Co-Referentiality

expression₁ → sense₁ → referent

expression₂ → sense₂

Synonymy

expression₁

sense → referent

expression₂
Empty Singular Terms

expression\(_1\) \(\rightarrow\) sense\(_1\)

expression\(_2\) \(\rightarrow\) sense\(_2\)

Indexicality? Ambiguity?

sense\(_1\) \(\rightarrow\) referent\(_1\)

sense\(_2\) \(\rightarrow\)

expression \(\rightarrow\) sense\(_3\) \(\rightarrow\) referent\(_2\)

sense\(_4\) \(\rightarrow\) referent\(_3\)

\ldots

sense\(_i\) \(\rightarrow\) referent\(_j\)
The Evening Star—Morning Star Example
The Evening Star—Morning Star Example

- Frege's View

Evening Star \(=\) Morning Star

\[\text{sense}_1 \neq \text{sense}_2\]
The Evening Star—Morning Star Example

- Frege’s View

\[
\text{Evening Star} \quad = \quad \text{Morning Star}
\]

\[
\text{sense}_1 \quad \neq \quad \text{sense}_2
\]

- Quotational View

\[
\text{⌜Evening Star⌝} \quad \neq \quad \text{⌜Morning Star⌝}
\]

\[
\text{Evening Star} \quad = \quad \text{Morning Star}
\]
Informativity

- The identity statement is informative because the singular terms have different senses.
Informativity

- The identity statement is informative because the singular terms have different senses.
- But the terms themselves are different from each other as well.
The identity statement is informative because the singular terms have different senses.

But the terms themselves are different from each other as well.

Frege rejects to compare the terms themselves because the connection between sign and referent is arbitrary.
Informativity

- The identity statement is informative because the singular terms have different senses.
- But the terms themselves are different from each other as well.
- Frege rejects to compare the terms themselves because the connection between sign and referent is arbitrary.
- That’s one reason for having senses.
Indirect Reference, Indirect Sense

(1) Peter is happy.
(2) 'Peter is happy' contains 12 letters of the alphabet.
(3) John believes that Peter is happy.
(4) The sense of 'Peter of happy' is not compatible with the sense of 'Peter is sad'.

Several uses of expressions of natural languages:
Indirect Reference, Indirect Sense

(1) Peter is happy.
(2) 'Peter is happy' contains 12 letters of the alphabet.
(3) John believes that Peter is happy.
(4) The sense of 'Peter of happy' is not compatible with the sense of 'Peter is sad'.

Several uses of expressions of natural languages:

- Ordinary Use
Indirect Reference, Indirect Sense

(1) Peter is happy.
(2) 'Peter is happy' contains 12 letters of the alphabet.
(3) John believes that Peter is happy.
(4) The sense of 'Peter of happy' is not compatible with the sense of 'Peter is sad'.

Several uses of expressions of natural languages:

- Ordinary Use
- Non-Ordinary Use
Indirect Reference, Indirect Sense

(1) Peter is happy.
(2) 'Peter is happy' contains 12 letters of the alphabet.
(3) John believes that Peter is happy.
(4) The sense of 'Peter of happy' is not compatible with the sense of 'Peter is sad'.

Several uses of expressions of natural languages:

- Ordinary Use
- Non-Ordinary Use
 - Quotational Use
Indirect Reference, Indirect Sense

1. Peter is happy.
2. 'Peter is happy' contains 12 letters of the alphabet.
3. John believes that Peter is happy.
4. The sense of 'Peter is happy' is not compatible with the sense of 'Peter is sad'.

Several uses of expressions of natural languages:

- **Ordinary Use**
- **Non-Ordinary Use**
 - **Quotational Use**
 - **Indirect Use**
Let's consider a singular term, say the proper name »Peter«, and its sense (Sinn) and referent (Bedeutung).
Indirect Reference and Indirect Sense

Let's consider a singular term, say the proper name »Peter«, and its sense (Sinn) and referent (Bedeutung).

- The customary reference of »Peter« is its referent Peter, whereas the customary sense of »Peter« is some sense uniquely determining Peter (or a unique epistemic way in which Peter is being given to someone).
Indirect Reference and Indirect Sense

Let's consider a singular term, say the proper name »Peter«, and its sense (Sinn) and referent (Bedeutung).

- The customary reference of »Peter« is its referent Peter, whereas the customary sense of »Peter« is some sense uniquely determining Peter (or a unique epistemic way in which Peter is being given to someone).

- The indirect reference of »Peter« is its customary sense, the indirect sense of »Peter« is a sense that uniquely determined the customary sense of »Peter«.

(5) John says that Peter is happy.
(6) John fears that Peter is happy.
Introduction to the Philosophy of Language
Frege’s Uses of the Sense–Reference Distinction

- Informativity of Singular Terms: \(a = b \) is informative because \(a \) and \(b \) have different senses (cognitive value).
Frege’s Uses of the Sense–Reference Distinction

- Informativity of Singular Terms: $a = b$ is informative because a and b have different senses (cognitive value).
- Certain Attitude Ascriptions: »Peter believes that John is happy« You cannot substitute co-referential expressions in embedded sentence, because »John is happy« has indirect reference.
Frege’s Uses of the Sense–Reference Distinction

- Informativity of Singular Terms: \(a = b \) is informative because \(a \) and \(b \) have different senses (cognitive value).
- Certain Attitude Ascriptions: »Peter believes that John is happy« You cannot substitute co-referential expressions in embedded sentence, because »John is happy« has indirect reference.
- Theory of Inference: »Columbus inferred from the roundness of the Earth that he could reach India by travelling to the west« The inference is a relation between two senses.
Frege’s Uses of the Sense–Reference Distinction

- Informativity of Singular Terms: $a = b$ is informative because a and b have different senses (cognitive value).
- Certain Attitude Ascriptions: »Peter believes that John is happy« You cannot substitute co-referential expressions in embedded sentence, because »John is happy« has indirect reference.
- Theory of Inference: »Columbus inferred from the roundness of the Earth that he could reach India by travelling to the west« The inference is a relation between two senses.
- Explanation of Particularized Law-like Statements: »If the sun has already risen, the sky is very cloudy.« connects two thoughts.
Frege’s Uses of the Sense–Reference Distinction

● Informativity of Singular Terms: \(a = b \) is informative because \(a \) and \(b \) have different senses (cognitive value).

● Certain Attitude Ascriptions: »Peter believes that John is happy« You cannot substitute co-referential expressions in embedded sentence, because »John is happy« has indirect reference.

● Theory of Inference: »Columbus inferred from the roundness of the Earth that he could reach India by travelling to the west« The inference is a relation between two senses.

● Explanation of Particularized Law-like Statements: »If the sun has already risen, the sky is very cloudy.« connects two thoughts.

● Presuppositions: »Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge.« expresses two thoughts.
Frege’s Uses of the Sense–Reference Distinction

- Informativity of Singular Terms: \(a = b \) is informative because \(a \) and \(b \) have different senses (cognitive value).

- Certain Attitude Ascriptions: »Peter believes that John is happy« You cannot substitute co-referential expressions in embedded sentence, because »John is happy« has indirect reference.

- Theory of Inference: »Columbus inferred from the roundness of the Earth that he could reach India by travelling to the west« The inference is a relation between two senses.

- Explanation of Particularized Law-like Statements: »If the sun has already risen, the sky is very cloudy« connects two thoughts.

- Presuppositions: »Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge« expresses two thoughts.

- Theory of Sentence Mood: A thought is the sense of a sentence that is grasped in a specific manner, e.g. supposition, command, request, question. [exegetically unclear]
Frege’s Uses of the Sense–Reference Distinction

- Informativity of Singular Terms: \(a = b\) is informative because \(a\) and \(b\) have different senses (cognitive value).

- Certain Attitude Ascriptions: »Peter believes that John is happy« You cannot substitute co-referential expressions in embedded sentence, because »John is happy« has indirect reference.

- Theory of Inference: »Columbus inferred from the roundness of the Earth that he could reach India by travelling to the west« The inference is a relation between two senses.

- Explanation of Particularized Law-like Statements: »If the sun has already risen, the sky is very cloudy« connects two thoughts.

- Presuppositions: »Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge« expresses two thoughts.

- Theory of Sentence Mood: A thought is the sense of a sentence that is grasped in a specific manner, e.g. supposition, command, request, question. [exegetically unclear]

- (Partial) Explanation of Judgements: A judgement is the step from a thought to the reference of the sentence (True/False) in thinking.
(7) Copernicus believed that the planetary orbits are circles.

(8) Copernicus believed that the apparent motion of the sun is produced by the real motion of the Earth.
(7) Copernicus believed that the planetary orbits are circles.

(8) Copernicus believed that the apparent motion of the sun is produced by the real motion of the Earth.

- The reference of the embedded sentence is indirect.
Frege on Belief

(7) Copernicus believed that the planetary orbits are circles.

(8) Copernicus believed that the apparent motion of the sun is produced by the real motion of the Earth.

- The reference of the embedded sentence is indirect.
- So the embedded sentence refers to a sense, not to a truth value.
(7) Copernicus believed that the planetary orbits are circles.

(8) Copernicus believed that the apparent motion of the sun is produced by the real motion of the Earth.

- The reference of the embedded sentence is indirect.
- So the embedded sentence refers to a sense, not to a truth value.
- The embedded sentence can be replaced by any other sentence that has the same customary sense.
(7) Copernicus believed that the planetary orbits are circles.
(8) Copernicus believed that the apparent motion of the sun is produced by the real motion of the Earth.

- The reference of the embedded sentence is indirect.
- So the embedded sentence refers to a sense, not to a truth value.
- The embedded sentence can be replaced by any other sentence that has the same customary sense.
- The truth value of the whole belief ascription does not depend on the truth value of the embedded sentence.
(7) Copernicus believed that the planetary orbits are circles.
(8) Copernicus believed that the apparent motion of the sun is produced by the real motion of the Earth.

- The reference of the embedded sentence is indirect.
- So the embedded sentence refers to a sense, not to a truth value.
- The embedded sentence can be replaced by any other sentence that has the same customary sense.
- The truth value of the whole belief ascription does not depend on the truth value of the embedded sentence.
- That means that the relation between the two parts is **not truth-functional**.
(7) Copernicus believed that the planetary orbits are circles.
(8) Copernicus believed that the apparent motion of the sun is produced by the real motion of the Earth.

- The reference of the embedded sentence is indirect.
- So the embedded sentence refers to a sense, not to a truth value.
- The embedded sentence can be replaced by any other sentence that has the same customary sense.
- The truth value of the whole belief ascription does not depend on the truth value of the embedded sentence.
- That means that the relation between the two parts is not truth-functional.

- Analogous cases: »it seems that« really means »it seems to me that« or »I think that«
Attitudes With Special ‘Colouring’

(9) to be pleased
(10) to regret
(11) to approve
(12) to blame
(13) to hope
(14) to fear
Attitudes With Special ‘Colouring’

(9) to be pleased
(10) to regret
(11) to approve
(12) to blame
(13) to hope
(14) to fear

- The grasping of the senses of the embedded sentence is accompanied by some feeling.
Attitudes With Special ‘Colouring’

(9) to be pleased
(10) to regret
(11) to approve
(12) to blame
(13) to hope
(14) to fear

- The grasping of the senses of the embedded sentence is accompanied by some feeling.

- Exegetically unclear: Is the feeling a special mode of grasping the sense or is it a colouring of the idea associated with the sense (or is the second possibility the explanation of the first)?
Attitudes With Special ‘Colouring’

(9) to be pleased
(10) to regret
(11) to approve
(12) to blame
(13) to hope
(14) to fear

- The grasping of the senses of the embedded sentence is accompanied by some feeling.
- Exegetically unclear: Is the feeling a special mode of grasping the sense or is it a colouring of the idea associated with the sense (or is the second possibility the explanation of the first)?
- Lines 9–11 are *factive verbs*. They presuppose truth of the embedded sentence or at least allow a reading that does so.
Attitudes With Special ‘Colouring’

(9) to be pleased
(10) to regret
(11) to approve
(12) to blame
(13) to hope
(14) to fear

- The grasping of the senses of the embedded sentence is accompanied by some feeling.
- Exegetically unclear: Is the feeling a special mode of grasping the sense or is it a colouring of the idea associated with the sense (or is the second possibility the explanation of the first)?
- 9–11 are factive verbs. They presuppose truth of the embedded sentence or at least allow a reading that does so.
- Frege also discusses such mixed cases.
Attitudes With Special ‘Colouring’

(9) to be pleased
(10) to regret
(11) to approve
(12) to blame
(13) to hope
(14) to fear

- The grasping of the senses of the embedded sentence is accompanied by some feeling.
- Exegetically unclear: Is the feeling a special mode of grasping the sense or is it a colouring of the idea associated with the sense (or is the second possibility the explanation of the first)?
- 9–11 are factive verbs. They presuppose truth of the embedded sentence or at least allow a reading that does so.
- Frege also discusses such mixed cases.
- 12–14 are not factive, but Frege mentions them in the same line.
(15) Napoleon, who recognized the danger to his right flank, himself led his guards against the enemy position.

(16) Napoleon recognized the danger to his right flank.

(17) Napoleon himself led his guards against the enemy position.

(18) Knowledge of the danger to his right flank was reason why Napoleon led his guards against the enemy position.
Non-compositional Cases I

(15) Napoleon, who recognized the danger to his right flank, himself led his guards against the enemy position.

(16) Napoleon recognized the danger to his right flank.

(17) Napoleon himself led his guards against the enemy position.

(18) Knowledge of the danger to his right flank was reason why Napoleon led his guards against the enemy position.

• According to Frege, there is not always a 1 to 1 connection between lexical items and the thought(s) expressed.
Non-compositional Cases I

(15) Napoleon, who recognized the danger to his right flank, himself led his guards against the enemy position.

(16) Napoleon recognized the danger to his right flank.

(17) Napoleon himself led his guards against the enemy position.

(18) Knowledge of the danger to his right flank was reason why Napoleon led his guards against the enemy position.

- According to Frege, there is not always a 1 to 1 connection between lexical items and the thought(s) expressed.
- Frege’s view on natural language is holistic.
(15) Napoleon, who recognized the danger to his right flank, himself led his guards against the enemy position.

(16) Napoleon recognized the danger to his right flank.

(17) Napoleon himself led his guards against the enemy position.

(18) Knowledge of the danger to his right flank was reason why Napoleon led his guards against the enemy position.

- According to Frege, there is not always a 1 to 1 connection between lexical items and the thought(s) expressed.
- Frege’s view on natural language is **holistic**.
- Frege admits certain cases in which the sense of a sentence is determined **non-compositional**.
(19) Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge.

(20) Bebel believes that the return of Alsace-Lorraine would appease France’s desire for revenge.

(21) The return of Alsace-Lorraine would not appease France’s desire for revenge.
Non-compositional Cases II

(19) Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge.

(20) Bebel believes that the return of Alsace-Lorraine would appease France’s desire for revenge.

(21) The return of Alsace-Lorraine would not appease France’s desire for revenge.

- Modern Frege interpretations and reformulations often tend to ignore Frege’s non-compositional examples.
(19) Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge.

(20) Bebel believes that the return of Alsace-Lorraine would appease France’s desire for revenge.

(21) The return of Alsace-Lorraine would not appease France’s desire for revenge.

- Modern Frege interpretations and reformulations often tend to ignore Frege’s non-compositional examples.
- Frege almost certainly considered such mixed cases as deficiencies of natural languages. [exegetically unclear]
Non-compositional Cases II

(19) Bebel fancies that the return of Alsace-Lorraine would appease France’s desire for revenge.

(20) Bebel believes that the return of Alsace-Lorraine would appease France’s desire for revenge.

(21) The return of Alsace-Lorraine would not appease France’s desire for revenge.

- Modern Frege interpretations and reformulations often tend to ignore Frege’s non-compositional examples.
- Frege almost certainly considered such mixed cases as deficiencies of natural languages. [exegetically unclear]
- In modern frameworks, compositionality may be maintained by dealing with presuppositions separately.
Deficiencies of Natural Language

According to Frege:

Deficiencies of Natural Language

Introduction to the Philosophy of Language

Sense and Reference - p. 19/38
Deficiencies of Natural Language

According to Frege:

- Expressions might sometimes have no customary reference. empty proper names: »Odysseus«
According to Frege:

- Expressions might sometimes have no customary reference.
 empty proper names: »Odysseus«

- One expression might have different senses but the same customary referent.
 proper names: Speakers may grasp different senses of definite descriptions for the same proper name.
According to Frege:

- Expressions might sometimes have no customary reference. empty proper names: »Odysseus«
- One expression might have different senses but the same customary referent. proper names: Speakers may grasp different senses of definite descriptions for the same proper name.
- Expressions might have different senses depending on the context. ambiguity, indexicality
Deficiencies of Natural Language

According to Frege:

- Expressions might sometimes have no customary reference. empty proper names: »Odysseus«
- One expression might have different senses but the same customary referent. proper names: Speakers may grasp different senses of definite descriptions for the same proper name.
- Expressions might have different senses depending on the context. ambiguity, indexicality
- Expressions sometimes might express more than one sense at the same time in a non-compositional way. mixed cases of attitude ascriptions, some presuppositions (but not existence presuppositions!)
According to Frege:

- Expressions might sometimes have no customary reference. empty proper names: »Odysseus«
- One expression might have different senses but the same customary referent. proper names: Speakers may grasp different senses of definite descriptions for the same proper name.
- Expressions might have different senses depending on the context. ambiguity, indexicality
- Expressions sometimes might express more than one sense at the same time in a non-compositional way. mixed cases of attitude ascriptions, some presuppositions (but not existence presuppositions!)
- In general it is appropriate to say that Frege considered all kinds of presuppositions as imperfections of natural language.
Definite Descriptions
Background: Russell

Bertrand Russell (1872-1970): Background
Background: Russell

Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
Background: Russell

Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
Background: Russell

Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell's paradox in set theory
 - Ramified Theory of Types
Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell's paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
Background: Russell

Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: Principia Mathematica
 - a general defence of logicism
Background: Russell

Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
 - a general defence of **logicism**

- Some important contributions to the philosophy of language:
Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
 - a general defence of *logicism*

- Some important contributions to the philosophy of language:
 - Definite Descriptions
Background: Russell

Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
 - a general defence of **logicism**

- Some important contributions to the philosophy of language:
 - **Definite Descriptions**
 - Theory of Knowledge by Acquaintance
Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
 - a general defence of *logicism*

- Some important contributions to the philosophy of language:
 - Definite Descriptions
 - Theory of Knowledge by Acquaintance
 - Singular Propositions (aka Russellian Propositions)
Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
 - a general defence of logicism

- Some important contributions to the philosophy of language:
 - Definite Descriptions
 - Theory of Knowledge by Acquaintance
 - Singular Propositions (aka Russellian Propositions)

- Russell is also a moral philosopher and a pioneer in anti-war movements.
Bertrand Russell (1872-1970): Background

Russell mainly works on the foundations of mathematics:
- Russell’s paradox in set theory
- Ramified Theory of Types
- Russell & Whitehead: *Principia Mathematica*
- a general defence of *logicism*

Some important contributions to the philosophy of language:
- Definite Descriptions
- Theory of Knowledge by Acquaintance
- Singular Propositions (aka Russellian Propositions)

Russell is also a moral philosopher and a pioneer in anti-war movements.
- dismissed from Trinity college, and later convicted and sentenced to 6 months in jail for anti-war activities a second time (1918)
Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
 - a general defence of **logicism**

- Some important contributions to the philosophy of language:
 - Definite Descriptions
 - Theory of Knowledge by Acquaintance
 - Singular Propositions (aka Russellian Propositions)

- Russell is also a moral philosopher and a pioneer in anti-war movements.
 - dismissed from Trinity college, and later convicted and sentenced to 6 months in jail for anti-war activities a second time (1918)
 - Public protests against teaching in City College, NY, result in the revocation of his teaching permission (1940)
Background: Russell

Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
 - a general defence of *logicism*

- Some important contributions to the philosophy of language:
 - Definite Descriptions
 - Theory of Knowledge by Acquaintance
 - Singular Propositions (aka Russellian Propositions)

- Russell is also a moral philosopher and a pioneer in anti-war movements.
 - dismissed from Trinity college, and later convicted and sentenced to 6 months in jail for anti-war activities a second time (1918)
 - Public protests against teaching in City College, NY, result in the revokation of his teaching permission (1940)
 - Nobel Prize for literature (1950)
Background: Russell

Bertrand Russell (1872-1970): Background

- Russell mainly works on the foundations of mathematics:
 - Russell’s paradox in set theory
 - Ramified Theory of Types
 - Russell & Whitehead: *Principia Mathematica*
 - a general defence of *logicism*

- Some important contributions to the philosophy of language:
 - Definite Descriptions
 - Theory of Knowledge by Acquaintance
 - Singular Propositions (aka Russellian Propositions)

- Russell is also a moral philosopher and a pioneer in anti-war movements.
 - dismissed from Trinity college, and later convicted and sentenced to 6 months in jail for anti-war activities a second time (1918)
 - Public protests against teaching in City College, NY, result in the revocation of his teaching permission (1940)
 - Nobel Prize for literature (1950)
 - Russell-Einstein Manifesto against nuclear weapons (1955);
 founding president of the Campaign for Nuclear Disarmament (1958)
Analysis of Definite Descriptions

The \(F \) is \(G \) is analysed in 3 steps:

1. There is an \(x \) such that \(F(x) \), and
2. for all \(y \): if \(F(y) \), then \(x = y \), and
3. \(G(x) \)
The **F** is **G** is analysed in 3 steps:

1. There is an \(x \) such that \(F(x) \), and
2. for all \(y \): if \(F(y) \), then \(x = y \), and
3. \(G(x) \)
Analysis of Definite Descriptions

The *F is G* is analysed in 3 steps:

1. There is an x such that $F(x)$, and
2. for all y: if $F(y)$, then $x = y$, and
3. $G(x)$
Analysis of Definite Descriptions

The F is G is analysed in 3 steps:

1. There is an x such that F(x), and
2. for all y: if F(y), then x = y, and
3. G(x)

Existence
Presupposition
Uniqueness
Condition

Main Assertion
Analysis of Definite Descriptions

The F is G is analysed in 3 steps:

1. There is an x such that $F(x)$, and
2. for all y: if $F(y)$, then $x = y$, and
3. $G(x)$

Proper Names and Definite Descriptions

- Many proper names in natural languages are definite descriptions in disguise.

Lycan calls this the ‘Name Claim’.
Example

The famous example from *On Denoting* (1905):

“The present King of France is bald.”
The famous example from *On Denoting* (1905):

“The present King of France is bald.”

is analyzed as
Example

The famous example from *On Denoting* (1905):

“The present King of France is bald.”

is analyzed as

- There is an x that is present King of France, and
The famous example from *On Denoting* (1905):

“The present King of France is bald.”

is analyzed as

- There is an x that is present King of France, and
- for all y: if y is a King of France, then $y = x$, and
The famous example from *On Denoting* (1905):

“The present King of France is bald.”

is analyzed as

- There is an x that is present King of France, and
- for all y: if y is a King of France, then $y = x$, and
- x is bald
The famous example from *On Denoting* (1905):

“*The present King of France is bald.*”

is analyzed as

- There is an x that is present King of France, and
- for all y: if y is a King of France, then $y = x$, and
- x is bald
Russell mainly used the **iota-operator** which he symbolized by \(\iota \) (a Greek iota letter rotated by 180 degree). Since it is not easy to typeset in \LaTeX, many authors use a standard iota-symbol \(\iota \) nowadays. Here, \(\iota \) will be used for a **iota quantifier**, but this is non-standard notation.

Semantic Definition of the Iota Operator

\[
T_g(\iota x A) = \begin{cases}
 h(x) & \text{if there is exactly one } x \text{-variant } h \text{ of } g \text{ such that } M, h \models A \\
 \text{undefined otherwise}
\end{cases}
\]

(22)
Russell mainly used the **iota-operator** which he symbolized by \(\iota \) (a Greek iota letter rotated by 180 degree). Since it is not easy to typeset in \LaTeX, many authors use a standard iota-symbol \(\iota \) nowadays. Here, \(\iota \) will be used for a **iota quantifier**, but this is non-standard notation.

Semantic Definition of the Iota Operator

\[
T_g(\iota x A) = \begin{cases}
 h(x) & \text{if there is exactly one } x\text{-variant } h \text{ of } g \text{ such that } M, h \models A \\
 \text{undefined otherwise} & \end{cases}
\]

(22)

In the definition of truth in a model, this requires to deal with the case when \(T_g \) is undefined:

\[
M, g \models P(t_1, \ldots, t_n)
\]

(23)

iff \(T_g(t_1), \ldots, T_g(t_n) \) are defined

(24)

and \(\langle T_g(t_1), \ldots, T_g(t_n) \rangle \in I(P) \)

(25)
Iota Quantifier

Syntactic Abbreviation of a Iota Quantifier

\[\nu x \, AB := \exists x \, (A \land \forall y \,(A[x/y] \rightarrow x = y) \land B) \]

(26)

where \(A[x/y] \) is the formula obtained from \(A \) by substituting all free occurrences of \(x \) with \(y \).
Iota Quantifier

Syntactic Abbreviation of an Iota Quantifier

\[\nu x A B ::= \exists x(A \land \forall y(A[x/y] \to x = y) \land B) \tag{26} \]

where \(A[x/y] \) is the formula obtained from \(A \) by substituting all free occurrences of \(x \) with \(y \).

- The iota-operator refers to an object (or will be undefined) and syntactically behaves like a singular term: \(F(\nu x G(x)) \)
Iota Quantifier

Syntactic Abbreviation of a Iota Quantifier

\[\nu x AB := \exists x (A \land \forall y (A[x/y] \rightarrow x = y) \land B) \]

where \(A[x/y] \) is the formula obtained from \(A \) by substituting all free occurrences of \(x \) with \(y \).

- The iota-operator refers to an object (or will be undefined) and syntactically behaves like a singular term: \(F(\nu x G(x)) \)
- A iota quantifier has a restriction and a quantification body and syntactically is a formula: \(\nu x G(x) F(x) \)
Iota Quantifier

Syntactic Abbreviation of a Iota Quantifier

\[\iota x A B := \exists x (A \land \forall y (A[x/y] \rightarrow x = y) \land B) \] \hspace{1cm} (26)

where \(A[x/y] \) is the formula obtained from \(A \) by substituting all free occurrences of \(x \) with \(y \).

- The iota-operator refers to an object (or will be undefined) and syntactically behaves like a singular term: \(F(\iota x G(x)) \)
- A iota quantifier has a restriction and a quantification body and syntactically is a formula: \(\iota x G(x) F(x) \)
- Both of them implement Russell’s suggestion, as long as a formula with a non-denoting definite description is always false.
Iota Quantifier

Syntactic Abbreviation of a Iota Quantifier

\[
\iota x AB := \exists x (A \land \forall y (A[x/y] \rightarrow x = y) \land B)
\]

(26)

where \(A[x/y]\) is the formula obtained from \(A\) by substituting all free occurrences of \(x\) with \(y\).

- The iota-operator refers to an object (or will be undefined) and syntactically behaves like a singular term: \(F(\iota x G(x))\)
- A iota quantifier has a restriction and a quantification body and syntactically is a formula: \(\iota x G(x) F(x)\)
- Both of them implement Russell’s suggestion, as long as a formula with a non-denoting definite description is always false.
- \(F(\iota x G(x))\) and \(\neg F(\iota x G(x))\) are both false, if \(\iota x G(x)\) doesn’t denote!
Syntactic Abbreviation of a Iota Quantifier

\[\nu x \ A B := \exists x \ (A \land \forall y (A[x/y] \rightarrow x = y) \land B) \]

(26)

where \(A[x/y]\) is the formula obtained from \(A\) by substituting all free occurrences of \(x\) with \(y\).

- The iota-operator refers to an object (or will be undefined) and syntactically behaves like a singular term: \(F(\nu x G(x))\)
- A iota quantifier has a restriction and a quantification body and syntactically is a formula: \(\nu x G(x) F(x)\)
- Both of them implement Russell’s suggestion, as long as a formula with a non-denoting definite description is always false.
- \(F(\nu x G(x))\) and \(\neg F(\nu x G(x))\) are both false, if \(\nu x G(x)\) doesn’t denote!

- There’s a potential ambiguity involving negation: \(F(\nu x \neg G(x))\) versus \(\neg F(\nu x G(x))\)
Iota Quantifier

Syntactic Abbreviation of a Iota Quantifier

\[
\nu x AB := \exists x (A \land \forall y (A[x/y] \to x = y) \land B)
\]

where \(A[x/y] \) is the formula obtained from \(A \) by substituting all free occurrences of \(x \) with \(y \).

- The iota-operator refers to an object (or will be undefined) and syntactically behaves like a singular term: \(F(\nu x G(x)) \)
- A iota quantifier has a restriction and a quantification body and syntactically is a formula: \(\nu x G(x) F(x) \)
- Both of them implement Russell’s suggestion, as long as a formula with a non-denoting definite description is always false.
- \(F(\nu x G(x)) \) and \(\neg F(\nu x G(x)) \) are both false, if \(\nu x G(x) \) doesn’t denote!
- There’s a potential ambiguity involving negation: \(F(\nu x \neg G(x)) \) versus \(\neg F(\nu x G(x)) \)
- Our quantifier allows for even three distinctions: \(\neg \nu x G(x) F(x) \) versus \(\nu x G(x) \neg F(x) \) versus \(\nu x \neg G(x) F(x) \)
Interplay with Negation

Let's take a look at the three possible ways that one negation can occur in a iota quantifier term:
Interplay with Negation

Let's take a look at the three possible ways that one negation can occur in a iota quantifier term:

(1) \[\neg \exists x (Gx \land \forall y (Gy \rightarrow x = y) \land Fx) \]

"There is no \(x \) that uniquely has property \(G \) and also has property \(F \)"
Interplay with Negation

Let's take a look at the three possible ways that one negation can occur in a iota quantifier term:

1. \(\neg \forall x G(x) F(x) \)
 \[\uparrow \]
 \[\neg \exists x (Gx \land \forall y (Gy \rightarrow x = y) \land Fx) \]

 "There is no \(x \) that uniquely has property \(G \) and also has property \(F \)"

2. \(\exists x \neg G(x) F(x) \)
 \[\uparrow \]
 \[\exists x (\neg Gx \land \forall y (\neg Gy \rightarrow x = y) \land Fx) \]

 "There is exactly one \(x \) that doesn't have property \(G \), and this \(x \) also has property \(F \)"
Interplay with Negation

Let’s take a look at the three possible ways that one negation can occur in a iota quantifier term:

<table>
<thead>
<tr>
<th></th>
<th>Formula</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\neg \exists x G(x) \land F(x)$</td>
<td>"There is no x that uniquely has property G and also has property F"</td>
</tr>
<tr>
<td>2</td>
<td>$\exists x \neg G(x) \land F(x)$</td>
<td>"There is exactly one x that doesn't have property G, and this x also has property F"</td>
</tr>
</tbody>
</table>
| 3 | $\exists x (G(x) \land \forall y (G(y) \rightarrow x = y) \land \neg F(x))$ | "There is an x that uniquely has property G, and this x doesn't have property $F""
Examples

Here are more examples. Let \(M = \langle D, I \rangle \), where \(D = \{a, b, c\} \).
Here are more examples. Let $M = \langle D, I \rangle$, where $D = \{a, b, c\}$.

$$
\begin{array}{|c|c|c|c|c|}
\hline
F(\forall x G(x)) & I(G) = \{a\} & I(G) = \{a, b\} & I(G) = \{c\} & I(G) = \emptyset \\
\hline
I(F') = \{a\} & 1 & 0 & 0 & 0 \\
\hline
\end{array}
$$
Here are more examples. Let $M = \langle D, I \rangle$, where $D = \{a, b, c\}$.

<table>
<thead>
<tr>
<th>$F(\exists x G(x))$</th>
<th>$I(G) = {a}$</th>
<th>$I(G) = {a, b}$</th>
<th>$I(G) = {c}$</th>
<th>$I(G) = \emptyset$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I(F') = {a}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\neg F(\exists x G(x))$</th>
<th>$I(G) = {a}$</th>
<th>$I(G) = {a, b}$</th>
<th>$I(G) = {c}$</th>
<th>$I(G) = \emptyset$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I(F') = {a}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Here are more examples. Let $M = \langle D, I \rangle$, where $D = \{a, b, c\}$.

<table>
<thead>
<tr>
<th>Example</th>
<th>$I(G) = {a}$</th>
<th>$I(G) = {a, b}$</th>
<th>$I(G) = {c}$</th>
<th>$I(G) = \emptyset$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(\forall x G(x))$</td>
<td>$I(F') = {a}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$F(\forall x \neg G(x))$</td>
<td>$I(F') = {a}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$F(\forall x \neg G(x))$</td>
<td>$I(F') = {c}$</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
- F denotes a predicate.
- \forall denotes a universal quantifier.
- \neg denotes negation.
Some Observations

Some Observations

Possibilism vs. Actualism

Comparison of Russell and Frege
Some Observations

- A **iota operator** or **iota quantifier** can be introduced purely syntactically into predicate logic by means of an abbreviation.
Some Observations

- A **iota operator** or **iota quantifier** can be introduced purely syntactically into predicate logic by means of an abbreviation.
- Non-denoting definite descriptions will make the whole proposition false.
Some Observations

- A **iota operator** or **iota quantifier** can be introduced purely syntactically into predicate logic by means of an abbreviation.
- Non-denoting definite descriptions will make the whole proposition false.
- Identity statements can be informative because the definite descriptions used in singling out objects might contain different predicates.
Some Observations

- A **iota operator** or **iota quantifier** can be introduced purely syntactically into predicate logic by means of an abbreviation.
- Non-denoting definite descriptions will make the whole proposition false.
- Identity statements can be informative because the definite descriptions used in singling out objects might contain different predicates.
- Two claims have to be distinguished:
Some Observations

- A **iota operator** or **iota quantifier** can be introduced purely syntactically into predicate logic by means of an abbreviation.
- Non-denoting definite descriptions will make the whole proposition false.
- Identity statements can be informative because the definite descriptions used in singling out objects might contain different predicates.
- Two claims have to be distinguished:
 - **Russell’s Theory of Descriptions** Definite descriptions in natural language can be analysed in the Russellian way using a iota operator or quantifier.
Some Observations

- A **iota operator** or **iota quantifier** can be introduced purely syntactically into predicate logic by means of an abbreviation.
- Non-denoting definite descriptions will make the whole proposition false.
- Identity statements can be informative because the definite descriptions used in singling out objects might contain different predicates.
- Two claims have to be distinguished:
 - **Russell’s Theory of Descriptions** Definite descriptions in natural language can be analysed in the Russellian way using a iota operator or quantifier.
 - **Russell’s Analysis of Proper Names** Names often have to be analysed as definite descriptions in disguise.
Some Observations

- A **iota operator** or **iota quantifier** can be introduced purely syntactically into predicate logic by means of an abbreviation.

- Non-denoting definite descriptions will make the whole proposition false.

- Identity statements can be informative because the definite descriptions used in singling out objects might contain different predicates.

- Two claims have to be distinguished:
 - **Russell’s Theory of Descriptions** Definite descriptions in natural language can be analysed in the Russellian way using a iota operator or quantifier.
 - **Russell’s Analysis of Proper Names** Names often have to be analysed as definite descriptions in disguise.

- In Russell’s opinion, we cannot talk veridically about **non-existing entities (possibilia)**. If t doesn’t exist, $A(t)$ can’t be true.
Some Observations

- A **iota operator** or **iota quantifier** can be introduced purely syntactically into predicate logic by means of an abbreviation.
- Non-denoting definite descriptions will make the whole proposition false.
- Identity statements can be informative because the definite descriptions used in singling out objects might contain different predicates.
- Two claims have to be distinguished:
 - **Russell’s Theory of Descriptions** Definite descriptions in natural language can be analysed in the Russellian way using a iota operator or quantifier.
 - **Russell’s Analysis of Proper Names** Names often have to be analysed as definite descriptions in disguise.
- In Russell’s opinion, we cannot talk veridically about **non-existing entities (possibilia)**. If \(t \) doesn’t exist, \(A(t) \) can’t be true.
- It is possible to build a logic that allows talking veridically about non-existing entities and uses Russellian definite descriptions to do so. Russell’s definite descriptions themselves are neutral in respect to allowing or disallowing possibilia.
Possibilism vs. Actualism
Possibilism versus Actualism

- **Actualism** We can only make true assertions about objects that exist.
- **Possibilism** We can make true assertions both about objects that exist and about objects that don’t exist.

(1) The present king of France is bald.
(2) Unicorns have exactly one horn.
(3) The round square is round.

<table>
<thead>
<tr>
<th>Example</th>
<th>Actualist</th>
<th>Modest Possibilist</th>
<th>Meinongian</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(2)</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>(3)</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>

✔ = can be true
Arguments for Possibilism

Here are a few slogans in favor of possibilism:
Arguments for Possibilism

Here are a few slogans in favor of possibilism:

- **Existence versus Subsistence** A possibilist might claim that entities may subsist but not exist. In order to make a truthful statement about some entities, it is a necessary condition that they subsist, not that they exist.
Arguments for Possibilism

Here are a few slogans in favor of possibilism:

- **Existence versus Subsistence** A possibilist might claim that entities may subsist but not exist. In order to make a truthful statement about some entities, it is a necessary condition that they subsist, not that they exist.

- **Actuality versus Reality** Actuality (what is given by senses) is a smaller domain than reality (what can be talked about in a meaningful way).
Arguments for Possibilism

Here are a few slogans in favor of possibilism:

- **Existence versus Subsistence** A possibilist might claim that entities may subsist but not exist. In order to make a truthful statement about some entities, it is a necessary condition that they subsist, not that they exist.

- **Actuality versus Reality** Actuality (what is given by senses) is a smaller domain than reality (what can be talked about in a meaningful way).

- **Existence Presupposition versus Existence Assertion** Existence of referents of singular terms is only presupposed but not actually part of what is asserted by the whole utterance (Strawson 1950).
Arguments for Possibilism

Here are a few slogans in favor of possibilism:

- **Existence versus Subsistence** A possibilist might claim that entities may subsist but not exist. In order to make a truthful statement about some entities, it is a necessary condition that they subsist, not that they exist.

- **Actuality versus Reality** Actuality (what is given by senses) is a smaller domain than reality (what can be talked about in a meaningful way).

- **Existence Presupposition versus Existence Assertion** Existence of referents of singular terms is only presupposed but not actually part of what is asserted by the whole utterance (Strawson 1950).

- **Fictional Entities versus Actual Entities** We can talk about fictional entities in a meaningful way, and not everything we say of them is false. (take e.g. “Superman is a fictional entity”)
Arguments for Possibilism

Here are a few slogans in favor of possibilism:

- **Existence versus Subsistence** A possibilist might claim that entities may subsist but not exist. In order to make a truthful statement about some entities, it is a necessary condition that they subsist, not that they exist.

- **Actuality versus Reality** Actuality (what is given by senses) is a smaller domain than reality (what can be talked about in a meaningful way).

- **Existence Presupposition versus Existence Assertion** Existence of referents of singular terms is only presupposed but not actually part of what is asserted by the whole utterance (Strawson 1950).

- **Fictional Entities versus Actual Entities** We can talk about fictional entities in a meaningful way, and not everything we say of them is false. (take e.g. “Superman is a fictional entity”)

- **Fictional Existence–Mathematical Existence–Empirical Existence** There are several notions of existence that cannot mean the same.
Arguments for Possibilism

Here are a few slogans in favor of possibilism:

- **Existence versus Subsistence** A possibilist might claim that entities may subsist but not exist. In order to make a truthful statement about some entities, it is a necessary condition that they subsist, not that they exist.

- **Actuality versus Reality** Actuality (what is given by senses) is a smaller domain than reality (what can be talked about in a meaningful way).

- **Existence Presupposition versus Existence Assertion** Existence of referents of singular terms is only presupposed but not actually part of what is asserted by the whole utterance (Strawson 1950).

- **Fictional Entities versus Actual Entities** We can talk about fictional entities in a meaningful way, and not everything we say of them is false. (take e.g. “Superman is a fictional entity”)

- **Fictional Existence–Mathematical Existence–Empirical Existence** There are several notions of existence that cannot mean the same.

- **Reductionism versus Ontological Neutrality of Logic** It is not the purpose of logic to decide whether ontological monism holds or not, but presupposing one domain of quantification / one sort of quantifier does so.
Arguments for Actualism

Here are a few slogans in favor of actualism:
Arguments for Actualism

Here are a few slogans in favor of actualism:

- **Existence requires Consistency** Objects that have mutually contradictory properties cannot exist or subsist. So at least we know for sure that there are no round squares.
Arguments for Actualism

Here are a few slogans in favor of actualism:

- **Existence requires Consistency** Objects that have mutually contradictory properties cannot exist or subsist. So at least we know for sure that there are no round squares.

- **Existence versus Subsistence** We know that something exists when we bump against it, but what in the world is »subsistence« supposed to mean?
Arguments for Actualism

Here are a few slogans in favor of actualism:

- **Existence requires Consistency** Objects that have mutually contradictory properties cannot exist or subsist. So at least we know for sure that there are no round squares.

- **Existence versus Subsistence** We know that something exists when we bump against it, but what in the world is »subsistence« supposed to mean?

- **Lack of Identity Criteria** We can’t exactly say of possibilia what individuates them, we have no clear criteria for counting and distinguishing them from each other.
Arguments for Actualism

Here are a few slogans in favor of actualism:

- **Existence requires Consistency** Objects that have mutually contradictory properties cannot exist or subsist. So at least we know for sure that there are no round squares.

- **Existence versus Subsistence** We know that something exists when we bump against it, but what in the world is »subsistence« supposed to mean?

- **Lack of Identity Criteria** We can’t exactly say of possibilia what individuates them, we have no clear criterias for counting and distinguishing them from each other.

- **Fictional Entities versus Actual Entities** We talk about fictional entities as if they would exist, i.e. we change the domain and assume that they exist for the sake of fiction. There’s no need for several notions of existence.
Arguments for Actualism

Here are a few slogans in favor of actualism:

- **Existence requires Consistency** Objects that have mutually contradictory properties cannot exist or subsist. So at least we know for sure that there are no round squares.

- **Existence versus Subsistence** We know that something exists when we bump against it, but what in the world is »subsistence« supposed to mean?

- **Lack of Identity Criteria** We can’t exactly say of possibilia what individuates them, we have no clear criterias for counting and distinguishing them from each other.

- **Fictional Entities versus Actual Entities** We talk about fictional entities as if they would exist, i.e. we change the domain and assume that they exist for the sake of fiction. There’s no need for several notions of existence.

- **Fictional Existence–Mathematical Existence–Empirical Existence** All of these notions mean the same, only the domain of objects in question might change. Of course, logic can’t decide whether something exists or not, so the exact extension of the domain is always a point of view / decided by practical considerations.
Arguments for Actualism

Here are a few slogans in favor of actualism:

- **Existence requires Consistency** Objects that have mutually contradictory properties cannot exist or subsist. So at least we know for sure that there are no round squares.

- **Existence versus Subsistence** We know that something exists when we bump against it, but what in the world is »subsistence« supposed to mean?

- **Lack of Identity Criteria** We can’t exactly say of possibilia what individuates them, we have no clear criterias for counting and distinguishing them from each other.

- **Fictional Entities versus Actual Entities** We talk about fictional entities as if they would exist, i.e. we change the domain and assume that they exist for the sake of fiction. There’s no need for several notions of existence.

- **Fictional Existence–Mathematical Existence–Empirical Existence** All of these notions mean the same, only the domain of objects in question might change. Of course, logic can’t decide whether something exists or not, so the exact extension of the domain is always a point of view / decided by practical considerations.

- **Reductionism versus Ontological Neutrality of Logic** Logic is neutral in respect of the domain of objects to talk about, and anything that is in the domain exists.
Comparison of Russell and Frege
The Evening Star—Morning Star Example

- Frege’s View

Evening Star = Morning Star

\[\text{sense}_1 \neq \text{sense}_2 \]

- Russell’s View

\[\forall x (S(x) \land E(x)) = \forall x (S(x) \land M(x)) \]
The Evening Star—Morning Star Example

- Frege’s View
 - Evening Star = Morning Star
 - \[\text{sense}_1 \neq \text{sense}_2 \]

- Russell’s View
 - Evening Star = Morning Star
 - \[\forall x (S(x) \land E(x)) = \forall x (S(x) \land M(x)) \]
Similarities
Similarities

- Informativity of Identity Statements $Hesperus = Phosphorus$
Similarities

- Informativity of Identity Statements $Hesperus = Phosphorus$
 - Frege: Two proper names can have different sense, but the same referent.
Similarities

- Informativity of Identity Statements $Hesperus = Phosphorus$
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.
Similarities

- Informativity of Identity Statements *Hesperus* = *Phosphorus*
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- Empty Proper Names *Odysseus*
Similarities

- **Informativity of Identity Statements** $Hesperus = Phosphorus$
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- **Empty Proper Names** $Odysseus$
 - Frege: Empty proper names don’t denote, but have a sense.
Similarities

- **Informativity of Identity Statements** *Hesperus = Phosphorus*
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- **Empty Proper Names** *Odysseus*
 - Frege: Empty proper names don’t denote, but have a sense.
 - Russell: Empty proper names are definite descriptions that don’t denote.
Similarities

- **Informativity of Identity Statements** *Hesperus = Phosphorus*
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- **Empty Proper Names** *Odysseus*
 - Frege: Empty proper names don’t denote, but have a sense.
 - Russell: Empty proper names are definite descriptions that don’t denote.

- **Epistemic Access to Particulars**
Similarities

- **Informativity of Identity Statements** \(Hesperus = Phosphorus \)
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- **Empty Proper Names** \(Odysseus \)
 - Frege: Empty proper names don’t denote, but have a sense.
 - Russell: Empty proper names are definite descriptions that don’t denote.

- **Epistemic Access to Particulars**
 - Frege: We grasp a sense and that sense is the way a particular is being given (if it exists).
Similarities

- Informativity of Identity Statements *Hesperus = Phosphorus*
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- Empty Proper Names *Odysseus*
 - Frege: Empty proper names don’t denote, but have a sense.
 - Russell: Empty proper names are definite descriptions that don’t denote.

- Epistemic Access to Particulars
 - Frege: We grasp a sense and that sense is the way a particular is being given (if it exists).
 - Russell: We test whether a particular satisfies a certain definite description or we refer to it directly and indexically (Knowledge by Acquaintance).
Similarities

- **Informativity of Identity Statements** *Hesperus* = *Phosphorus*
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- **Empty Proper Names** *Odysseus*
 - Frege: Empty proper names don’t denote, but have a sense.
 - Russell: Empty proper names are definite descriptions that don’t denote.

- **Epistemic Access to Particulars**
 - Frege: We grasp a sense and that sense is the way a particular is being given (if it exists).
 - Russell: We test whether a particular satisfies a certain definite description or we refer to it directly and indexically (Knowledge by Acquaintance).

- **Proper Names**
Similarities

- **Informativity of Identity Statements** $Hesperus = Phosphorus$
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- **Empty Proper Names** $Odysseus$
 - Frege: Empty proper names don’t denote, but have a sense.
 - Russell: Empty proper names are definite descriptions that don’t denote.

- **Epistemic Access to Particulars**
 - Frege: We grasp a sense and that sense is the way a particular is being given (if it exists).
 - Russell: We test whether a particular satisfies a certain definite description or we refer to it directly and indexically (Knowledge by Acquaintance).

- **Proper Names**
 - Frege: proper name \xrightarrow{has} sense $\xrightarrow{determines}$ object
Similarities

- **Informativity of Identity Statements** *Hesperus = Phosphorus*
 - Frege: Two proper names can have different sense, but the same referent.
 - Russell: Two different descriptions can pick out the same referent.

- **Empty Proper Names** *Odysseus*
 - Frege: Empty proper names don’t denote, but have a sense.
 - Russell: Empty proper names are definite descriptions that don’t denote.

- **Epistemic Access to Particulars**
 - Frege: We grasp a sense and that sense is the way a particular is being given (if it exists).
 - Russell: We test whether a particular satisfies a certain definite description or we refer to it directly and indexically (Knowledge by Acquaintance).

- **Proper Names**
 - Frege: proper name $\text{has} \xrightarrow{\text{sense}} \text{determines} \xrightarrow{\text{object}}$
 - Russell: proper name $\text{is analysed as} \xrightarrow{\text{iota term}} \text{determines} \xrightarrow{\text{object}}$
Differences
Differences

- Ontological Differences
Differences

• Ontological Differences
 ✦ Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
Differences

- Ontological Differences
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russelssian propositions $\langle a, P \rangle$
Differences

● Ontological Differences
 ✦ Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 ✦ Russell: ontologically heterogeneous entities are allowed: Russellian propositions \(\langle a, P \rangle \)
 ✦ Frege: particulars can’t be in our head, something universal like senses must mediate between out thinking and the world
Differences

- Ontological Differences
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russellian propositions $\langle a, P \rangle$
 - Frege: particulars can’t be in our head, something universal like senses must mediate between our thinking and the world
 - Russell: senses don’t exist, can’t be well defined, are dubious entities
Differences

- Ontological Differences
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russellian propositions \(\langle a, P \rangle \)
 - Frege: particulars can’t be in our head, something universal like senses must mediate between our thinking and the world
 - Russell: senses don’t exist, can’t be well defined, are dubious entities

- Differences in Expressivity
Differences

- Ontological Differences
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russellian propositions $\langle a, P \rangle$
 - Frege: particulars can’t be in our head, something universal like senses must mediate between our thinking and the world
 - Russell: senses don’t exists, can’t be well defined, are dubious entities

- Differences in Expressivity
 - Fregean Theory: one non-ambiguous expression can have different senses
Differences

- Ontological Differences
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russellian propositions \(\langle a, P \rangle \)
 - Frege: particulars can’t be in our head, something universal like senses must mediate between our thinking and the world
 - Russell: senses don’t exist, can’t be well defined, are dubious entities

- Differences in Expressivity
 - Fregean Theory: one non-ambiguous expression can have different senses
 - Russellian Theory: one non-ambiguous expression should have one logical analysis
Differences

• Ontological Differences
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russellian propositions \(\langle a, P \rangle \)
 - Frege: particulars can’t be in our head, something universal like senses must mediate between our thinking and the world
 - Russell: senses don’t exist, can’t be well defined, are dubious entities

• Differences in Expressivity
 - Fregean Theory: one non-ambiguous expression can have different senses
 - Russellian Theory: one non-ambiguous expression should have one logical analysis

• Practical Differences
Differences

- Ontological Differences
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russellian propositions \(\langle a, P \rangle \)
 - Frege: particulars can’t be in our head, something universal like senses must mediate between out thinking and the world
 - Russell: senses don’t exists, can’t be well defined, are dubious entities

- Differences in Expressivity
 - Fregean Theory: one non-ambiguous expression can have different senses
 - Russellian Theory: one non-ambiguous expression should have one logical analysis

- Practical Differences
 - Theory of Descriptions formally worked out; definable in first-order logic
Differences

- **Ontological Differences**
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russellian propositions \(\langle a, P \rangle \)
 - Frege: particulars can’t be in our head, something universal like senses must mediate between out thinking and the world
 - Russell: senses don’t exists, can’t be well defined, are dubious entities

- **Differences in Expressivity**
 - Fregean Theory: one non-ambiguous expression can have different senses
 - Russellian Theory: one non-ambiguous expression should have one logical analysis

- **Practical Differences**
 - Theory of Descriptions formally worked out; definable in first-order logic
 - Sense–Reference distinction not reflected in Frege's Begriffsschrift; it doesn’t deal with senses at all. (But nowadays intensional logics are available.)
Differences

- Ontological Differences
 - Frege: ontology of senses is strictly homogeneous; only senses can combine with senses.
 - Russell: ontologically heterogeneous entities are allowed: Russellian propositions $\langle a, P \rangle$
 - Frege: particulars can’t be in our head, something universal like senses must mediate between our thinking and the world
 - Russell: senses don’t exist, can’t be well defined, are dubious entities

- Differences in Expressivity
 - Fregean Theory: one non-ambiguous expression can have different senses
 - Russellian Theory: one non-ambiguous expression should have one logical analysis

- Practical Differences
 - Theory of Descriptions formally worked out; definable in first-order logic
 - Sense–Reference distinction not reflected in Frege's Begriffsschrift; it doesn’t deal with senses at all. (But nowadays intensional logics are available.)
Objections Against Definite Descriptions
Objections Against Definite Descriptions

- Objection: Some natural language definite descriptions are used generically.

(27) *ger* Der Wal ist das größte Meeressäugetier.
 “The wale is the largest mammal living in the sea.”
Objections Against Definite Descriptions

- Objection: Some natural language definite descriptions are used generically.

 (27) *ger* Der Wal ist das größte Meeressäugetier.

 “*The wale is the largest mammal living in the sea.*”

- Reply: This is granted, but doesn’t affect the definite uses. Logical analysis yields a different formalization for generic uses.
Objections Against Definite Descriptions

- Objection: Some natural language definite descriptions are used generically.
 (27) *Der Wal ist das größte Meeressäugetier.*
 "The wale is the largest mammal living in the sea."

- Objection: Not all uses of definite descriptions suggest that there is only one referent satisfying the description.
 (28) The man with the hat looks suspicious.

- Reply: This is granted, but doesn’t affect the definite uses. Logical analysis yields a different formalization for generic uses.
Objections Against Definite Descriptions

- Objection: Some natural language definite descriptions are used generically.

 (27) *Der Wal ist das größte Meeressäugetier.*
 “The wale is the largest mammal living in the sea.”

- Reply: This is granted, but doesn’t affect the definite uses. Logical analysis yields a different formalization for generic uses.

- Objection: Not all uses of definite descriptions suggest that there is only one referent satisfying the description.

 (28) The man with the hat looks suspicious.

- Reply: (a) In order to refer uniquely, the description must be unique. (b) We often don’t mention the limiting context that is implicit in conversation, but this context could and should be added to the definite description. (c) If a definite description doesn’t single out the referent uniquely in a given context, the hearer will ask questions.
Objections against the claim that most proper names are definite descriptions in disguise:
Objections Against the ‘Name Claim’

Objections against the claim that most proper names are definite descriptions in disguise:

- Objection: When we use a proper name, we don’t need to know a particular definite description that picks out the referent uniquely.
Objections Against the ‘Name Claim’

Objections against the claim that most proper names are definite descriptions in disguise:

- Objection: When we use a proper name, we don’t need to know a particular definite description that picks out the referent uniquely.
- Reply: (a) That's granted, but in such a case we don't really understand the proper name. (b) We don't need to know the description, but there is one. (c) No, we do need to know a particular definite description.
Objections Against the ‘Name Claim’

Objections against the claim that most proper names are definite descriptions in disguise:

- Objection: When we use a proper name, we don’t need to know a particular definite description that picks out the referent uniquely.
- Reply: (a) That’s granted, but in such a case we don’t really understand the proper name. (b) We don’t need to know the description, but there is one. (c) No, we do need to know a particular definite description.
- Objection: For any definite description α and proper name n, the identity statement $\alpha = n$ is informative. If that’s right, then there can be no definite description that is the meaning or correct analysis of n.

 (29) Goethe is the author of *Faust*.

 (30) ? The author of *Faust* is the author of *Faust*.

Objections against the claim that most proper names are definite descriptions in disguise:

- **Objection:** When we use a proper name, we don’t need to know a particular definite description that picks out the referent uniquely.
- **Reply:** (a) That’s granted, but in such a case we don’t really understand the proper name. (b) We don’t need to know the description, but there is one. (c) No, we do need to know a particular definite description.

- **Objection:** For any definite description \(\alpha \) and proper name \(n \), the identity statement \(\alpha = n \) is informative. If that’s right, then there can be no definite description that is the meaning or correct analysis of \(n \).
 (29) Goethe is the author of *Faust*.
 (30) ? The author of *Faust* is the author of *Faust*.
- **Reply:** (a) Deny the first claim. Not every statement \(\alpha = n \) is informative for any speaker. Each speaker has some definite description associated with a proper name. (b) The informativity of statements / assertions / utterances cannot be explained by the meaning of expressions alone, but the analysis must also include these expressions themselves. (metalinguistic view)