Disagreement and Understanding
What Has Been Said

Erich Rast
erich@snafu.de

IFL, Universidade Nova de Lisboa

16. March 2012
Overview

Contextualism, Relativism, and Faultless Disagreement

Relative Readings

Absolute Readings
Predicates of Personal Taste

- Predicates that express tasting experiences or taste in general: tasty, fun, yummy, . . .
- Relatively uncontroversial examples:
 - *Roller coasters are fun.* (concerning taste in general)
 - *This steak is yummy.* (concerning tasting)
- However, it is not clear which expressions actually belong to this class.
 - *This wine is fat/fruity/flowery/foxy/ . . .*
 - These seem to describe both *our* tasting experience and the *wine’s* taste!
 - *This meal is good.* versus *Justice is good.*
 - Is *good* equivocal?
Central Questions

1. Are predicates of personal taste context-dependent and if so, in which way?
 Yes, some of them are equivocal and (in the relative reading) semantically incomplete.

2. Is faultless disagreement about utterances containing predicates of personal taste possible and if so, how should it be modeled semantically/pragmatically?
 Yes, but only in a nonessential way; it is disagreement about different interpretations (cf. Iacona 2008).

3. Are sentences with predicates of personal taste commonly used to convey subjective and objective judgments and if so, how?
 Yes, (i) they have a relative reading with egocentric default interpretation and (ii) some of them have an absolute reading, which is semantically indeterminate.
Central Claim

Semantic Underspecification Thesis

Many predicates of personal taste are (1) semantically equivocal, (2) incomplete in their relative reading and (3) indeterminate in the absolute reading.

Predicates of Personal Taste

- absolute reading
 - indeterminate
- relative reading
 - incomplete

Three potential sources of disagreement:

- Disagreement about different interpretations of the relative reading. **faultless**
- Disagreement about the same interpretation of the relative reading or one particular absolute reading. **not faultless**
- Meaning disagreement under the absolute reading. ???
Digression about Lexical Meaning

- ‘Indeterminacy’ is here understood in a weak sense: A natural language expression is indeterminate if it does not have a fully fixed, commonly agreed public language meaning.
- A gradual path to indeterminacy:
 1. *and, no*: determinate and fairly uncontroversial meaning despite special readings (e.g. asymmetric *and*).
 2. *cat, beech, arthritis*: more or less determinate meaning, fixed by experts’ convention, potential divergence between ‘everyday’ and expert understanding.
 3. *freedom, sin, God*: indeterminate, meaning not (generally) fixed by experts’ convention.

Example

(1) This cat ate my budgie. disagreement likely about evidence
(2) Freedom is the highest good in society. disagreement about (supporting) evidence, values, or the meaning of the expressions
Digression about Lexical Meaning: birds

- Typical bird
- Penguin
- Budgie

experts’ definition
Digression about Lexical Meaning: freedom
A Standard Example

Example

(3) Roller coasters are fun.
(4) Roller coasters are fun for me.
(5) Roller coasters are fun for everyone.

• Genericity: (3) \(\neq\) (5) in any case

• Perhaps generic readings are only possible if the NP is generic (above) or in truth-directed contexts (Moltmann 2012); if so, it is not a feature of PPTs per se.

• For simplicity, the issue will be ignored in what follows.
Example

(3) Roller coasters are fun.

1. Contextualism:
 - \(\forall x [RC(x) \rightarrow Fun(x)] \)
 - where it is possible that \([Fun]^M_g (c)(i)(a) = T\) and \([Fun]^M_g (c')(i)(a) = F\) if \(c' \neq c\)
 - in case of which \([Fun]^M_g (c) \neq [Fun]^M_g (c')\)

2. Relativism (Lasersohn, Kölbl):
 - \(\forall x [RC(x) \rightarrow Fun(x)] \)
 - where it is possible that \([Fun]^M_g (c)(i')(a) = T\) and \([Fun]^M_g (c)(i')(a) = F\) if \(i' \neq i\)
 - in case of which the disagreement is about the same content \([Fun]^M_g (c)\)
Indexicalism and Invariantism

Example

(3) Roller coasters are fun.

3. LF-Indexicalism:
 - $\forall x[RC(x) \rightarrow Fun(x, y)]$
 - where it is of course possible that $[Fun]_g^M (c)(i)(a)(b) = T$
 and $[Fun]_g^M (c)(i)(a)(b') = F$ if $b' \neq b$
 - and y must be provided by the context like in other cases of open variables (cf. anaphora, Binding Criterion)

4. Invariantism:
 - $\forall x[RC(x) \rightarrow Fun(x)]$
 - where evaluation is either not relativized to contexts or Fun is context-invariant, and Fun only varies with the indices according to the usual treatment of modal and tense operators
 - i.e. the index only encodes times and worlds (and sometimes places), and neither context nor index encode a ‘judge’, ‘view’, ‘assessor’, ‘vantage point’, etc.
An Interpretation-based Account

1. Assume an open argument place, i.e. the subjective reading of *fun* is *fun for someone*. (like LF-indexicalism, but the Binding Argument is irrelevant)

2. Literal Meaning: \(\forall x [RC(x) \rightarrow Fun(x, y)] \)

3. Existential Completion: \(\forall x \exists y [RC(x) \rightarrow Fun(x, y)] \)

4. Abductive Inference:
 \(\forall x \exists y [RC(x) \rightarrow Fun(x, y)] \sim a \rightarrow \forall x [RC(x) \rightarrow Fun(x, b)] \)

5. Default Inference: \(\forall x [RC(x) \rightarrow Fun(x, l)] \)
 “Roller coasters are fun for me.”

6. By default predicates of personal taste are interpreted egocentrically, but this preference can be overridden as dependent on the QUD.

7. The existential completion is also a defeasible inference, under some circumstances it may be overridden, e.g.
 \(\forall x [RC(x) \rightarrow Fun(x, y)] \sim \exists Q(Q(y) \forall x [RC(x) \rightarrow Fun(x, y)]) \sim Most(y) \forall x [RC(x) \rightarrow Fun(x, y)]. \)

... for the subjective reading only!
Non-egocentric Interpretations

Example

Situation: John and Mary both know that each of them doesn’t like amusement parks and Mary had a spine injury a longer time ago that prohibits her from riding on roller coasters. John has promised to spend more time with the children. They are planning their weekend.

John: Where should we go with the children this weekend?
Mary: Roller coasters are fun.

⇝ Roller coasters are fun for the children.
∀x[RC(x) → Fun(x, a)] → ∀x∃y[RC(x) → Fun(x, y)]

fun for Tina
fun for the speaker
fun for this group of Japanese tourists
Qualitative Modeling 2

Quantitative Modeling 1

Quantitative belief with 2 propositional variables before and after Jeffrey conditioning to $Bel'(p) = 0.9$:

<table>
<thead>
<tr>
<th></th>
<th>Bel</th>
<th>q</th>
<th>$\neg q$</th>
<th>Bel'</th>
<th>q</th>
<th>$\neg q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>p</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{10}$</td>
<td>$\frac{3}{10}$</td>
<td>p</td>
<td>$\frac{3}{5}$</td>
</tr>
<tr>
<td></td>
<td>$\neg p$</td>
<td>$\frac{2}{5}$</td>
<td>$\frac{3}{10}$</td>
<td>$\frac{7}{10}$</td>
<td>$\neg p$</td>
<td>$\frac{2}{35}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{3}{5}$</td>
<td>$\frac{2}{5}$</td>
<td>1</td>
<td></td>
<td>$\frac{23}{35}$</td>
</tr>
</tbody>
</table>
Connection to Formal Epistemology: Jeffrey conditioning (Jeffrey 1965)

\[
Bel'(X) = \alpha \frac{Bel(X \land \lnot[\phi]_a)}{Bel([\phi])} + (1 - \alpha) \frac{Bel(X \land [\phi])}{Bel([\phi])}
\]

\[
= \alpha Bel(X \mid [\phi]) + (1 - \alpha) Bel(X \mid \lnot[\phi])
\]

See also Fields (1978).
What is denied?

Example

(3) Anne: Roller coasters are fun.
(6a) Bob: Roller coasters are not fun.
(6b) Bob: That’s not true!
(7) Anne: This vegetable is yummy.
(8a) Bob: This vegetable is not yummy. It’s overcooked.
(8b) Bob: That’s not true! It’s overcooked.

• If Anne is honest and sincere then her utterances of (3) and (7), in the subjective reading, simply express her opinion that RCs are fun for her and the vegetable is yummy for her.
• 6b and 8b do not challenge the egocentric interpretation.
 • To challenge the egocentric interpretation Bob would have to say: That’s not really what you think., You’re confused about your feelings, etc.
 • Or, the discourse participant just begs to differ: They are not fun to me, or I don’t like it.
• In contrast to this, 6b and 8b deny the absolute reading.
Another Example

Example

(7) This Dona Maria 2005 is flowery.

Claim:

- Relative reading as before: $Flowery(a, x)$
- Invariantist absolute reading: $Flowery(a)$
- Why?
 - A particular chemical composition is a necessary condition for someone’s experiencing the flowery taste.
 - Someone actually tasting the wine can very well be mistaken about the taste.
 - Someone may be mistaken about the taste even if he is fully competent with respect to the meaning of flowery.

cf. Smith (2007)
Meaning Disagreement

Example

(8) Her performance was capricious.
(9) This wine is brilliant.
(10) a. Anne: Roller coasters are fun.
b. John: No they aren’t.
c. Anne: They are fun, the problem is that you just don’t know what fun is.
(11) a. Anne: This vegetable is tasty.
b. John: No it isn’t.
c. Anne: It is tasty, the problem is that you have a lousy taste.

These may well be meaning disagreements. The meaning of ‘capricious’, ‘brilliant’, ‘fun’, ‘tasty’ in the context of these uses might only be determinate within each speaker’s ideolect.
Relative vs. Absolute Readings: Summary 1

This Dona Maria 2005 is flowery.

derivation from lexicon

Flowery(a) Flowery(a,x)

∃xFlowery(a,x)

existential completion

abduction

Flowery(a,I)

background knowledge, QUD

blue = usually preferred interpretations (defeasible)
Relative vs. Absolute Readings: Summary II

Relative Reading

<table>
<thead>
<tr>
<th>$S(\phi') = H(\phi')$</th>
<th>$B_H H(\phi')$</th>
<th>$\neg B_H H(\phi')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>① agreement</td>
<td></td>
<td>② disagreement of substance</td>
</tr>
<tr>
<td>③ misunderstanding</td>
<td></td>
<td>④ faultless disagreement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S(\phi') \neq H(\phi')$</th>
<th>$B_H I_H(\phi')$</th>
<th>$\neg B_H I_H(\phi')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>⑤ disagreement of substance: $I_H(\phi) = I_S(\phi)$, $\neg B_H(\phi)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑥ meaning disagreement: $I_H(\phi) \neq I_S(\phi)$, $B_H I_H(\phi) \neq I_S(\phi)$; $(B_H(I_S(\phi)))$ might not be relevant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absolute Reading

Legend: ϕ – literal meaning of sentence containing PPT; ϕ' – existential completion of ϕ; $S(.)$ and $H(.)$ – interpretation of speaker and hearer respectively; $B_H(.)$ – hearer’s belief; $I_H(\phi)$ and $I_S(\phi)$ – hearer and speaker ideolect respectively
So What?

What might interest a philosopher about this...
Statements Expressing Value Judgments

Example
(8) Secondary virtues are good.

Similarities to predicates of personal taste:

- These expressions seem to meander between different interpretations, too: good for me vs. good in general.
- Their absolute readings are even more controversial than those of predicates of personal taste.

Dissimilarities to predicates of personal taste:

- The default interpretation is not always egocentric.
- Sometimes the absolute reading may be prevalent.
- Even the question whether absolute readings are ‘grounded in nature’, as opposed to be derived from subjective ones, is highly controversial.
Conclusions

- Some PPTs are equivocal between a relative and an absolute reading.
- Relative readings of PPTs have an egocentric default interpretation.
- Under the relative reading, PPTs are semantically incomplete in the sense of having open argument places.
- I have suggested that a pragmatic theory of interpretation is the adequate tool for modeling relative readings. (cf. Bach)
- Absolute readings of PPTs may be adequately modeled by invariantist semantic representations.
- Absolute readings of PPTs are often semantically indeterminate in the sense of not having a meaning upon which speakers, including experts, conventionally agree.
- From a semantical perspective the invariantist semantics is appropriate; from a philosophical perspective it may or may not be endorsed and there will likely be meaning disagreement.
The End
Literature

Faultless Disagreement – Relativist Point of View

\[M, a \models p \quad \text{(2)} \]
\[M, b \models \neg p \quad \text{(3)} \]

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>b</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Structure of Interpretative Belief