Nonindexical Context-Dependence and the Interpretation as Abduction Approach

Erich Rast
erich@snafu.de

IFL, Universidade Nova de Lisboa

PhiLang 2011, 13. 5. 2011
Overview

Interpretation as Abduction

Examples

Technical Remarks

Conclusions
Interpretation as Abduction (IA)

This approach goes back to Hobbs et. al. (1993) but since then has barely been elaborated. It can be used for modeling nonindexical linguistic context-dependence.

Examples of Context-Dependence

(1) John is ready.
(2) Every beer is in the fridge.
(3) Fire!
(4) I’m parked back there.
(5) John went to the bank.

Thesis: IA is well-suited for cases like (1)-(3), less appropriate for (4)-(5).
The Setting

Intensions

- In the article, intensions as sets of possible worlds are used – i.e. predicates of type ct in HOL, where c is a type for states (possible worlds or more fine-grained entities; situations in a partial logic (Muskens 1995, 2005)).
- IA can also be generalized to a two-dimensional semantics but the details can be tricky (Rast 2010).

Inclusive Context-Dependence

- Let P_i be possible interpretations of Q. If in general $\forall s.P_i s \rightarrow Qs$, i.e. $P_i \subseteq Q$ in set-theoretic terms, then the context-dependence is *inclusive*. Otherwise let us call it *non-inclusive*.
- If a context-dependence is inclusive, an (agent-relative) abductive inference can be used to model the interpretation of semantically incomplete content.
Problem Formulation
For a given intension Q and agent a in a given base situation u, find the P_j among the P_i’s such that $\forall s. P_i s \rightarrow Qs$ that is most plausible for the agent a in u (in comparison to all other P_i’s).

- The states play the role of doxastic alternatives in this approach.
- Can be implemented directly on the basis of *subjective plausibility* understood as a preorder relation over the set of states.
Example: John is ready

\[\lambda s. \exists X [\text{ready}(s, \text{John}, X)] \] \tag{1}

Consider existential particularizations \text{ready}(s, \text{John}, C_i) for constants \(C_i \). Each of these implies (1), hence abduction is applicable:

\[
\text{ready}(s, \text{John}, C_i) \rightarrow \exists X . \text{ready}(s, \text{John}, X)
\]
Many cases of nonindexical context-dependence can be modeled by existentially quantifying over open argument places:

- John is ready.
 \[\lambda s. \exists X. \text{ready}(s, \text{John}, X) \rightsquigarrow \lambda s. \text{ready}(s, \text{John}, C) \]

- Every beer is in the fridge.
 \[\lambda s. \exists XY. \forall x[(\text{Beer}(s, x) \land X(s, x)) \rightarrow \text{located}(x, \iota y[\text{Fridge}(s, y) \land Y(s, y)])] \]
 \[\rightsquigarrow \lambda s. \forall x[(\text{Beer}(s, x) \land C_1(s, x)) \rightarrow \text{located}(x, \iota y[\text{Fridge}(s, y) \land C_2(s, y)])] \]

- Fire!
 \[\lambda s. \exists x[\text{burn}(s, x)] \rightsquigarrow \lambda s. \text{burn}(s, c) \]

(These representations are just examples and not intended to be fully adequate.)
Ambiguities and Semantic Transfer

Problem with Ambiguity

(5) John went to the bank.

(5′) \(\lambda s. \text{Past}(s) \land (\text{go}[s, \text{John}, \nu x. \text{bank}_1(s, x)] \lor \text{go}[s, \text{John}, \nu x. \text{bank}_2(s, x)]) \)

Applying the interpretation as abduction view to ambiguities requires literal semantic content that represents a huge disjunction of all possible interpretations. Such content is not readily available.

Problem with Semantic Transfer

(4) I’m parked back there.

These cases require other mechanisms (e.g. Gricean ones) in order to arrive at some interpretable contents in the first place. Their literal meaning is not the basis for abductive inference, if there is one.
Notes on the Implementation

- The details are in the article.
- Based on work on preference logic by van Benthem/Liu (2005), Liu (2008), Lang/van der Torre (2008), Baltag/Smets (2006, 2010) and my own work.
- Introduce a preorder \leq over states (reflexive, transitive) that also depends on an agent and a base state, reflecting an agent’s ability to compare two scenarios according to their subjective plausibility at a given time.
- You also need a well-ordering axiom to ensure that every non-empty intension has a \leq-minimum.
- For the dynamics you can encode well-known preference update operations directly in HOL, e.g. the article uses lexicographic update. Without dynamics the approach becomes a case of ‘vacuous modeling’!
- One form of abduction is then based on the \leq-minimum of $\lambda s.\forall t[Rst \rightarrow Pt]$ for an agent in a given base state.
- “the most plausible states in the R-relation to those in P”
Abduction

Minimum
Relative to an agent x, base state u, plausibility relation C and intension P:

$$\text{MIN} := \lambda CxuP.\iota Q\forall s[(Ps \land \neg \exists t[Pt \land Cxuts \land \neg Cxust])] \equiv Qs$$

General Abduction
Relative to an agent x, a base state u, and intension P:

$$\downarrow := \lambda CxuP.\text{MIN}_C xu\lambda s.\forall t[Rst \rightarrow Pt]$$

R is a sort of ‘accessibility relation’ that can be used to implement different forms of abductive reasoning. For example, Rst could be read as *s is a cause of t*.
Lexicographic upgrade: To revise an ordering relation by \(P \), shift all \(P \)-states on top of the non-\(P \)-states in the new relation.

Summary and Conclusions

- Inclusive context-dependence is very common.
- Many cases of linguistic context-dependence can be modeled on the basis of the interpretation as abduction view.
- Not much is gained by attempting to apply the interpretation as abduction method to non-inclusive context-dependence.
- General forms of abduction can be implemented on the basis of subjective plausibility.
- **Danger of vacuous modeling:** To avoid it, a way to rationally revise the plausibility relation in light of new evidence is needed.
- Future goals:
 - Use more methods from formal epistemology for theorizing about the semantics/pragmatics interface.
 - Combine plausibility with default reasoning.